Proofs in Elementary Analysis

Branko Ćurgus

Contents

Chapter 1. Introduction 6
1.1. Why Mathematics? 6
1.2. The Branko Ćurgus Mathematical Experience 6
1.3. Rigorous reasoning 6
1.3.1. Five pillars of rigorous reasoning 7
1.3.2. How to ensure that your reasoning holds under critical reevaluation: 7
1.4. Goals of this class 7
1.5. Strategies 7
Chapter 2. A brief review of mathematical logic 9
2.1. Propositional calculus 9
2.1.1. Propositions 9
2.1.2. Compound propositions 9
2.1.3. Propositional calculus 10
2.2. Implications 11
2.3. Propositional functions 12
2.3.1. Propositional functions 12
2.3.2. Quantifiers 13
2.3.3. Generalized DeMorgan's laws 13
2.3.4. Statements with multiple quantifiers 14
2.4. Examples 15
2.5. Exercises 19
Chapter 3. Sets and functions 20
3.1. Sets 20
3.1.1. Sets, element of a set, empty set 20
3.1.2. Subset, power set, equal sets 20
3.1.3. Set operations 22
3.1.4. Generalized unions and intersections 24
3.1.5. Ordered Pairs and the Cartesian Product of Sets 24
3.2. Functions 25
3.2.1. A formal definition of a function 25
3.2.2. New functions from old 27
3.2.3. Surjection, injection, bijection (via flip) 30
3.2.4. Invertible function, inverse 31
3.2.5. Cantor's theorem 35
3.3. Cardinality of sets 38
Chapter 4. The set \mathbb{R} of real numbers 41
4.1. Axioms for the set \mathbb{R} of real numbers 41
4.1.1. Axioms of a field 42
4.1.2. Axioms of order in a field 44
4.2. Four functions to start with 47
4.3. Intervals 51
4.3.1. Intersections and unions of infinite families of intervals 53
4.3.2. Cardinality of intervals 54
4.4. Bounded sets, minimum and maximum 62
Chapter 5. The subsets \mathbb{N}, \mathbb{Z} and \mathbb{Q} of \mathbb{R} 64
5.1. The set \mathbb{N} 64
5.2. Examples and exercises related to \mathbb{N} 67
5.3. Finite sets and infinite sets 69
5.4. Countable sets 71
5.4.1. An explicit bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} 74
5.4.2. The Quadruplicity of Sets 76
5.5. The sets \mathbb{Z} and \mathbb{Q} 77
Chapter 6. The Completeness Axiom 79
6.1. The Completeness Axiom 79
6.2. More on the sets \mathbb{N}, \mathbb{Z} and \mathbb{Q} 85
6.3. Infimum and supremum 86
Chapter 7. The topology of \mathbb{R} 91
7.1. The topology of \mathbb{R} 91
7.1.1. The structure of open sets in \mathbb{R} 93
7.2. The topology of \mathbb{R}^{2} 93
Chapter 8. Sequences in \mathbb{R} 96
8.1. Definitions and examples 96
8.2. Bounded sequences 97
8.3. The definition of a convergent sequence 98
8.3.1. My informal discussion of convergence 99
8.4. Finding $N(\epsilon)$ for a convergent sequence 100
8.5. Two standard sequences 103
8.6. Non-convergent sequences 104
8.7. Convergence and boundedness 104
8.8. Algebra of limits of convergent sequences 104
8.9. Convergent sequences and the order in \mathbb{R} 105
8.10. The monotonic convergence theorem 106
8.11. Two important sequences with the same limit 107
8.12. Subsequences 108
8.13. The Cauchy criterion 110
8.14. Sequences and supremum and infimum 110
8.15. Limit inferior and limit superior 111
Chapter 9. Continuous functions 113
9.1. The $\epsilon-\delta$ definition of a continuous function 113
9.2. Finding $\delta(\epsilon)$ for a given function at a given point 113
9.3. Familiar continuous functions 114
9.4. Various properties of continuous functions 115
9.5. Algebra of continuous functions
9.6. Continuous functions on a closed bounded interval $[a, b] \quad 116$

CHAPTER 1

Introduction

1.1. Why Mathematics?

Mathematics has experienced millennia of glorious advancement. Its accomplishments are among the greatest achievements of humanity. Just over the last hundred years, we have witnessed the extensive mathematization of many aspects of life in general, and of all sciences in particular. No other human endeavor can claim such success. There is no reason to believe that this course will change in the millennia to come.

And all this has been achieved purely on the merit of its intellectual content, without resorting to marketing, propaganda, or persuasion so common in many other human activities.

The conclusion that inevitably follows from this success is that there are profound qualities in the broad field of mathematics. The single quality that must have contributed to its success is the intellectual rigor with which mathematics is developed.

Mathematics has something to offer for everyone. Everyone can benefit from the deliberate practice of rigorous thinking, from clarity and precision in the use of language, and from other intellectual experiences encountered in a well-structured mathematics course at any level.

1.2. The Branko Ćurgus Mathematical Experience

Mathematics has always been a personal experience for me. I want to create an environment where you can embrace mathematics as your own personal experience. How can this be achieved? Begin by acknowledging what you don't understand without fear. Discuss challenges openly with others. Open your mind, ask questions. Share your questions generously with others, treating them like precious gems. Questions are the gateway to deeper comprehension. Indeed, questions serve as a bridge from confusion to clarity.

I want the greatness of mathematics to permeate every class period with my students. I believe that every little piece of mathematics reflects some of its profound qualities, some of its essence. With my students and for my students, I want to make this engaging; I want to make it come alive.

1.3. Rigorous reasoning

The main benefit a student should take from a mathematics course is exposure to rigorous reasoning. In no other field is rigor as accessible to students as it is in a mathematics class. But what are the main features of rigorous reasoning? Below I offer five pillars of rigorous reasoning. Pillars do not provide a guide on how to
construct a rigorous response to a presented problem. Instead, the pillars provide a framework to recognize whether a presented work is rigorous.

1.3.1. Five pillars of rigorous reasoning.

(I) Define all relevant concepts precisely, or provide references that rigorously present the definitions.
(II) State clearly which question or problem is under consideration.
(III) Clearly state the assumptions under which the proposed conclusion holds.
(IV) State the background knowledge you will use in your argument and provide references that rigorously present the background knowledge.
(V) Present logical reasoning that deduces the conclusion from the assumptions and the background knowledge. Present logical reasoning which demonstrates that the background knowledge is applicable as used in your reasoning.
1.3.2. How to ensure that your reasoning holds under critical reevaluation:
> Critically evaluate all aspects of your reasoning: Have all relevant concepts been included? Are all assumptions used? Are there some hidden assumptions that are used but not stated? Is your logic solid?
$>$ Sometimes, it is necessary to be vague about background knowledge. Be honest and admit it in your presentation of the background knowledge.
$>$ Be open to improvements. Look for hidden clues that suggest improvements.
$>$ If the presentation is cumbersome, break it into smaller pieces to make it more transparent.
> Illustrate your reasoning with multiple specific examples. Do the examples reveal something that you might have overlooked in your work?
$>$ Support your reasoning with analogies and similar settings to make it easier to understand.

1.4. Goals of this class

$>$ To provide a systematic foundation for basic concepts encountered in calculus, especially those associated with the structure of the real numbers and in particular notions related to the Completeness Axiom.
$>$ To introduce students to the structure and role of proofs in mathematics. Specifically, we assert that the only way to truly understand proofs is by constructing them on your own.
$>$ To develop the ability to critically read and judge the correctness and completeness of mathematical reasoning.
$>$ To develop a skill in presenting mathematical reasoning clearly and precisely.

1.5. Strategies

How to get started towards a solution of a problem?
> Illustrate the problem with several examples.
$>$ Make sure that you understand the terminology used in the problem. Review all relevant definitions.
$>$ Can you restate the problem as an implication? (Clearly identify the assumptions and the conclusion of the implication.)
$>$ Identify problems done in class that are in some sense related to the problem that you are working on. Review proofs of those problems.
$>$ Try to identify tools that can be used in the solution of the problem.
$>$ If you can not solve the given problem, try to formulate a related simpler problem that you can solve. For example, try to solve a special case.
$>$ Be flexible. Have in mind that there are many ways to approach each problem.
$>$ Keep a detailed written record of your work.

How to avoid mistakes?

$>$ Write your solution out carefully. Include justifications for all arguments that you use.
$>$ Read your solution critically after a day or two. Is everything that you use in your proof justified.
> Imagine that a skeptic is reading your proof. Can you answer all sceptic's question?

CHAPTER 2

A brief review of mathematical logic

Proofs in mathematics are based on logic, which is a science that studies forms of rigorous reasoning. The basic building blocks of logic are propositions.

2.1. Propositional calculus

2.1.1. Propositions. A proposition, also known as a statement, is a declarative sentence that is either true or false. For example, the sentence 'Two equals one plus one' is a true proposition. In mathematical notation, this proposition is written as $2=1+1$, and it is true. Conversely, an example of a false proposition is $0=1$.
2.1.2. Compound propositions. We now introduce natural methods for combining propositions to form new ones, known as compound propositions. Similar to how letters represent numbers in algebra and other mathematical disciplines, in logic, letters are used as variables to represent propositions. The most significant compound propositions in mathematics include the following: negation, conjunction, disjunction, implication (or conditional), and equivalence (or biconditional).

Definition 2.1.1. The negation of a proposition p is the proposition "not p " which is false when p is true and which is true when p is false. This proposition is denoted by $\neg p$.

Definition 2.1.2. The conjunction of propositions p and q is the proposition " p and q " which is true when both p and q are true and false otherwise. This proposition is denoted by $p \wedge q$. The conjunction of three propositions p, q and r is defined as $(p \wedge q) \wedge r$ which is true when all three propositions are true and false otherwise.

Definition 2.1.3. The disjunction of propositions p and q is the proposition " p or q " which is false when both p and q are false and true otherwise. This proposition is denoted by $p \vee q$. The disjunction of three propositions p, q and r is defined as $(p \vee q) \vee r$ which is false when all three propositions are false and true otherwise.

Definition 2.1.4. The implication or conditional of propositions p and q is the proposition "If p, then q " which is false when p is true and q is false and true otherwise. This proposition is denoted by $p \Rightarrow q$.

Definition 2.1.5. The equivalence or biconditional of propositions p and q is the proposition " p if and only if q " which is true when both $p \Rightarrow q$ and $q \Rightarrow p$ are true. This proposition is denoted by $p \Leftrightarrow q$.

The above definitions are summarized by the following truth tables.

negation		conjunction		disjunction		implication		equivalence	
p	$\neg p$	$p \quad q$	$p \wedge q$	$p \quad q$	$p \vee q$	$p \quad q$	$p \Rightarrow q$	$p \quad q$	$p \Leftrightarrow q$
T	F	T T	T	T T	T	T T	T	T T	T
F	T	T F	F	T F	T	T F	F	T F	F
		F T	F	F T	T	F T	T	F T	F
			F		F	F F	T	F F	T

2.1.3. Propositional calculus. Doing calculations with compound propositions is called propositional calculus. Here are the most important rules of propositional calculus.

The double negation rule: The negation of the negation of a proposition is equivalent to the original proposition. In short: $\neg(\neg p) \Leftrightarrow p$. To prove this proposition we form the truth table:

p	$\neg p$	$\neg(\neg p)$	p
T	F	T	T
F	T	F	F

DeMorgan's Laws: The negation of a conjunction is the disjunction of the corresponding negations. In short: $\neg(p \wedge q) \Leftrightarrow(\neg p) \vee(\neg q)$. The proof, again, is by truth table:

p	q	$p \wedge q$	$\neg(p \wedge q)$	$(\neg p) \vee(\neg q)$	$\neg p$	$\neg q$
T	T	T	F	F	F	F
T	F	F	T	T	F	T
F	T	F	T	T	T	F
F	F	F	T	T	T	T

The negation of a disjunction is the conjunction of the corresponding negations. In short: $\neg(p \vee q) \Leftrightarrow(\neg p) \wedge(\neg q)$. The proof, again, is by truth table:

p	q	$p \vee q$	$\neg(p \vee q)$	$(\neg p) \wedge(\neg q)$	$\neg p$	$\neg q$
T	T	T	F	F	F	F
T	F	T	F	F	F	T
F	T	T	F	F	T	F
F	F	F	T	T	T	T

The negation of an implication: The negation of $p \Rightarrow q$ is the conjunction of p and the negation of q. In short: $\neg(p \Rightarrow q) \Leftrightarrow(p \wedge(\neg q))$. The proof, again, is by truth table:

p	q	$p \Rightarrow q$	$\neg(p \Rightarrow q)$	$p \wedge(\neg q)$	p	$\neg q$
T	T	T	F	F	T	F
T	F	F	T	T	T	T
F	T	T	F	F	F	F
F	F	T	F	F	F	T

2.2. Implications

Since the most important statements in mathematics are formulated as implications, the implications deserve a section in this brief summary.

Probably because of its importance, the English language has provided twelve different ways of verbalizing the implication $p \Rightarrow q$: (I) If p, then q. (II) If p, q. (III) q if p. (IV) q when p. (V) p is sufficient for q. (VI) q is necessary for p. (VII) A sufficient condition for q is p. (VIII) A necessary condition for p is q. (IX) p implies q. (X) p only if q. (XI) q whenever p. (XII) q follows from p.

For a given implication, there are three named related implications.
Definition 2.2.1. Let $p \Rightarrow q$ be an implication. The contrapositive of $p \Rightarrow q$ is the implication $\neg q \Rightarrow \neg p$. The converse of $p \Rightarrow q$ is the implication $q \Rightarrow p$. The inverse of $p \Rightarrow q$ is the implication $\neg p \Rightarrow \neg q$.

Although we are interested in mathematical propositions, it is often useful to explore real life propositions. My favorite real-life example relates to Red Square, the main square with a fountain on the WWU campus.

Name	Claim
p	It rains on Red Square.
q	Red Square is wet.
$\neg p$	It does not rain on Red Square.
$\neg q$	Red Square is not wet.

When dealing with real-life we assume that the claims that we use as propositions truly are either true or false. We do not accept that there are ambiguous situation in which we can not decide whether it is raining or not.

Let us explore the implication $p \Rightarrow q$ and three related implications which involve the above real-life propositions p and q.

	Claim (below RS stands for Red Square)	Name
$p \Rightarrow q$	If it rains on RS, then RS is wet.	Implication
$q \Rightarrow p$	If RS is wet, then it rains on RS.	Converse
$\neg q \Rightarrow \neg p$	If RS is not wet, then it does not rain on RS.	Contrapositive
$\neg p \Rightarrow \neg q$	If it does not rain on RS, then RS is not wet.	Inverse

In my experience the implication $p \Rightarrow q$ in the preceding table is true. I have never witnessed that Red Square is not wet when it is raining on Red Square. In my experience the converse $q \Rightarrow p$ is not always true. On few occasions, I have witnessed wet Red Square, on a sunny day. For example, the fountain flooded once and Red Square was truly wet on a sunny, that is a definitely nonrainy, day. From this we conclude that the implication and its converse are not related. It is possible for an implication to be true, while the converse is not true. In fact, whenever you
see an implication proved in mathematics, a good question to ask: Is the converse true?

The situation with the contrapositive is different: A proposition is equivalent to its contrapositive. The easiest way to see this is to look at the negations. The negation of the implication $p \Rightarrow q$ is $p \wedge(\neg q)$. The negation of the contrapositive $(\neg q) \Rightarrow(\neg p)$ is $(\neg q) \wedge(\neg(\neg p))$. By the double negation rule the proposition $\neg(\neg p)$ is equivalent to p. Hence the negation of the contrapositive is equivalent to $(\neg q) \wedge p$. But, $p \wedge(\neg q)$ and $(\neg q) \wedge p$ are clearly equivalent. So, the negations of the implication and its contrapositive have the identical truth values. Therefore the implication and its contrapositive have the identical truth values.

The fact that a proposition is equivalent to its contrapositive can also be seen by forming the following truth table:

p	q	$p \Rightarrow q$	$(\neg q) \Rightarrow(\neg p)$	$\neg q$	$\neg p$
T	T	T	T	F	F
T	F	F	F	T	F
F	T	T	T	F	T
F	F	T	T	T	T

Definition 2.2.2. Let $p \Rightarrow q$ be an implication. The proposition p is called the hypothesis of the implication $p \Rightarrow q$. The proposition q is called the conclusion of the implication $p \Rightarrow q$.

2.3. Propositional functions

2.3.1. Propositional functions. The next level in the hierarchy of logical constructs is that of propositional functions. A propositional function or predicate is an expression which involves one or more variables and which becomes a proposition when variables are replaced by specific values from a particular set of values called the universe of discourse.

For example: $2 x^{2}-x>0$ is not a proposition; it is a propositional function whose universe of discourse can be any set of numbers. Denote the the propositional function $2 x^{2}-x>0$ by $Q(x)$. Let $S=\{-1,0,1\}$ be the universe of discourse for $Q(x)$. Then we can form three specific propositions $Q(-1), Q(0), Q(1)$:

x	$Q(x)$	meaning	T or F
-1	$Q(-1)$	$3>0$	T
0	$Q(0)$	$0>0$	F
1	$Q(1)$	$1>0$	T

Now we can form the conjunction of these three propositions $Q(-1) \wedge Q(0) \wedge$ $Q(1)$ which is

$$
(3>0) \wedge(0>0) \wedge(1>0)
$$

which is false since not all of the three propositions are true. The negation of this compound proposition

$$
(3 \leq 0) \vee(0 \leq 0) \vee(1 \leq 0)
$$

is true since the proposition $0 \leq 0$ is true.
Similarly we can form the disjunction of the propositions in the table: $Q(-1) \vee$ $Q(0) \vee Q(1)$ which is

$$
(3>0) \vee(0>0) \vee(1>0)
$$

which is true since not all of the three propositions are false. The negation of the preceding compound proposition

$$
(3 \leq 0) \wedge(0 \leq 0) \wedge(1 \leq 0)
$$

is false since not all three propositions in the conjunction are true; the proposition $1 \leq 0$ is false.
2.3.2. Quantifiers. If we consider the universe of discourse of the propositional function $Q(x)$ considered above to be the set \mathbb{R} of all real numbers, then forming the conjunction and the disjunction of all the propositions $Q(x)$ with $x \in \mathbb{R}$ would be impossible in a way that we did above. Therefore we introduce the concept of the universal quantifier and the existential quantifier.

The symbol for the universal quantifier is \forall. We read it "for all." If $P(x)$ is any propositional function with the universe of discourse U then

$$
\forall x \in U \quad P(x) \text { means: } P(x) \text { is true for all } x \in U .
$$

Consider a specific example. Use the propositional function $2 x^{2}-x>0$ and the universal quantifier. The statement

$$
\forall x \in \mathbb{R} \quad 2 x^{2}-x>0
$$

is a proposition. The truth value of the displayed proposition is F (false) since $2 x^{2}-x>0$ is not true for all $x \in \mathbb{R}$. For example, with $x=0$ we have $2(0)^{2}-0=$ $0>0$, which is false.

The symbol for the existential quantifier is \exists. We read it "there exists." If $P(x)$ is any propositional function with the universe of discourse U then

$$
\exists x \in U P(x) \quad \text { means that } P(x) \text { is true for at least one } x \in U .
$$

or, in other words,
$\exists x \in U P(x)$ means that there exists $x \in U$ such that $P(x)$ is true.
Consider a specific example. Use, again, the propositional function $2 x^{2}-x>0$ and, this time, the existential quantifier. The statement

$$
\exists x \in \mathbb{R} \quad 2 x^{2}-x>0
$$

is a proposition. The truth value is T (true) since for $x=1 \in \mathbb{R}$ we have $2(1)^{2}-1=$ $1>0$, which is true.
2.3.3. Generalized DeMorgan's laws. The generalized DeMorgan's Laws provide the rules for negations of quantified statements involving the universal quantifier (\forall) and the existential quantifier (\exists). The meaning of the statements with quantifiers and their negations is best summarized in the following table:

Statement	When true?	When false?	Negation
$\forall x \in U P(x)$	$P(x)$ is true for all $x \in U$	There exists an $x \in U$ such that $P(x)$ is false	$\exists x \in U \neg P(x)$
$\exists x \in U P(x)$	There exists an $x \in U$ such that $P(x)$ is true	$P(x)$ is false for all $x \in U$	$\forall x \in U \neg P(x)$

Below, the first generalized DeMorgan's Law is expressed in logic notation:

$$
\neg(\forall x \in U \quad P(x)) \quad \Leftrightarrow \quad \exists x \in U \quad \neg P(x)
$$

We read this as: The negation of the proposition "for all x in $U, P(x)$ is true" is equivalent to the proposition "there exists an x in U such that $P(x)$ is not true".

To illustrate this law, let us consider an example involving the universe of discourse U to be the set of all students in this class and let $P(x)$ be the following statement:

$$
P(x) \text { is } \quad x \text { likes chocolate. }
$$

Then the proposition $\forall x \in U \quad P(x)$, in common language is:
Every student in this class likes chocolate

The last statement is either true or false. Regardless of its truth value, we can formulate its negation. The negation of the displayed boxed proposition is

There exists a student in this class who does not like chocolate.
This example demonstrates how the negation of a proposition involving the universal quantifier leads to the existence of a counterexample, in accordance with DeMorgan's law. In other words, to disprove that the proposition "Every student in this class likes chocolate" we just need to find a "counterexample," a student who does not like chocolate.

Below, the second generalized DeMorgan's Law is expressed in logic notation:

$$
\neg(\exists x \in U \quad P(x)) \quad \Leftrightarrow \quad \forall x \in U \quad \neg P(x)
$$

We read this as: The negation of the proposition "there exists x in U such that $P(x)$ is true" is equivalent to the proposition "for all x in $U P(x)$ is not true".

To illustrate this law, we continue with the universe of discourse U to be the set of all students in this class and $P(x)$ as in the displayed statement above. Then the proposition $\exists x \in U P(x)$, in common language is:

There exists a student in this class who likes chocolate.
The last statement is either true or false. Regardless of its truth value, we can formulate its negation. The negation of the displayed boxed proposition is

Every student in this class does not like chocolate.
2.3.4. Statements with multiple quantifiers. To make things even more interesting mathematical statements often come with two or more quantifiers. Consider the statement

$$
\begin{equation*}
\forall a \in \mathbb{R} \quad \exists x \in \mathbb{R} \quad a x^{2}-x>0 \tag{2.3.1}
\end{equation*}
$$

Is this statement true or false? Its negation is

$$
\exists a \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad a x^{2}-x \leq 0
$$

The statement in (2.3.1) is true. We can prove it by considering two cases. If $a \geq 0$, then we can take $x=-1$. We get $a(-1)^{2}-(-1)=a+1 \geq 1>0$, which is true. If $a<0$, then take $x=1 /(2 a)$. Then, since $a<0$, we have

$$
a\left(\frac{1}{2 a}\right)^{2}-\frac{1}{2 a}=\frac{1}{4 a}-\frac{1}{2 a}=-\frac{1}{4 a}>0
$$

So, in both cases the statement in (2.3.1) is true.
It is very important to realize that the order of quantifiers matters. The reversal of the quantifiers in (2.3.1) leads to the following statement

$$
\exists x \in \mathbb{R} \quad \forall a \in \mathbb{R} \quad a x^{2}-x>0
$$

This statement is false since its negation

$$
\forall x \in \mathbb{R} \quad \exists a \in \mathbb{R} \quad a x^{2}-x \leq 0
$$

is true. To prove the negation we consider two cases. The first case $x \geq 0$. Setting $a=0$ we have $0(x)^{2}-x=-x \leq 0$ which is true. The second case is $x<0$. Assume $x<0$. Setting $a=2 / x$ we have

$$
\frac{2}{x} x^{2}-x=x \leq 0
$$

which is a true statement since $x<0$ in this case.
The simplest unsolved problem in mathematics is Goldbach's Conjecture which states a natural relationship between the even positive integers greater than 2 and the primes. The common notation for the set of all positive integers is \mathbb{N}. By \mathbb{P} we denote the set of all prime numbers. Using the notation of mathematical logic, one of the most famous unsolved problems in mathematics, Goldbach's Conjecture, can be stated as follows:

$$
\forall k \in \mathbb{N} \backslash\{1\} \quad \exists p \in \mathbb{P} \quad \exists q \in \mathbb{P} \quad \text { such that } \quad 2 k=p+q
$$

Using sophisticated programming this proposition has been verified for all $k \in \mathbb{N}\{1\}$ such that than $k \leq 2 \times 10^{18}$. However, despite significant effort of generations of mathematicians there is no proof that Goldbach's Conjecture holds for all integers greater than 1.

2.4. Examples

In the proof of Proposition 2.4.2 below, I will demonstrate how I use colors to enhance the clarity of proofs. Most mathematical statements are implications of the form $p \Rightarrow q$. To prove such a statement, we assume p and use some previous mathematical knowledge, which I refer to as the Background Knowledge, along with logic to deduce q. To emphasize what is assumed and which Background Knowledge is used, these statements are colored green. The statement that needs to be proved, q, is colored red. As the proof progresses, more statements become green. Finally, at the end of the proof, the conclusion q becomes q, signifying that it has been greenified and thus proven.

Another way that I use colors is to color terms of different kind in algebraic expressions. For example, in your previous mathematical experience you have learned how to solve a quadratic equation: Let $a, b, c \in \mathbb{R}$ and assume that $a \neq 0$. Find $x \in \mathbb{R}$ such that

$$
a x^{2}+b x+c=0 .
$$

Here $a, b, c \in \mathbb{R}$ are assumed to be known numbers (called coefficients) and x is unknown. To emphasise this known-unknown dichotomy, the coefficients $a, b, c \in$ \mathbb{R} are colored green and the unknown $x \in \mathbb{R}$ is colored red. So, the proper, colorful way to write a quadratic equation is as follows:

$$
a x^{2}+b x+c=0
$$

With this coloring convention, solving the equation becomes just separating the colors. That is, we aim to express the red unknown in terms of green "knowns"

$$
x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \quad \text { or } \quad x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
$$

Using the notation of mathematical logic this short review of quadratic equation can be summarized as a proposition:

Proposition 2.4.1. Let $a, b, c, x \in \mathbb{R}$. Assume that $a \neq 0$ and $b^{2}-4 a c \geq 0$. Then

$$
a x^{2}+b x+c=0 \quad \Leftrightarrow \quad\left(x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\right) \bigvee\left(x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right) .
$$

Proof. Think about how a proof of this proposition could go.
The following proposition states something that you might have learned in your previous mathematical experience. Here I state the proposition using the notation of mathematical logic and use colors to make proof easier to follow.

Proposition 2.4.2. For all $a, b, c \in \mathbb{R}$ the following implication holds

$$
\forall x \in \mathbb{R} \quad a x^{2}+b x+c \geq 0 \quad \Rightarrow \quad a \geq 0
$$

Proof. Let $a, b, c \in \mathbb{R}$ be arbitrary. The colored version of the implication in the proposition is

$$
\begin{equation*}
\forall x \in \mathbb{R} \quad a x^{2}+b x+c \geq 0 \Rightarrow a \geq 0 \tag{2.4.1}
\end{equation*}
$$

The implication in (2.4.1) is equivalent to its contrapositive

$$
\begin{equation*}
a<0 \Rightarrow \exists x \in \mathbb{R} \quad a x^{2}+b x+c<0 \text {. } \tag{2.4.2}
\end{equation*}
$$

Proof of (2.4.2) must start with the following phrase: Assume

$$
\begin{equation*}
a<0 \tag{2.4.3}
\end{equation*}
$$

To prove the implication in (2.4.2) we need to understand the coloring of the variables involved. The real numbers $a, b, c \in \mathbb{R}$ are given. They are arbitrary but fixed real numbers. To emphasise this fact I color them green: $a, b, c \in \mathbb{R}$. We only know that $a<0$. The variable $x \in \mathbb{R}$ which is under the existential quantifier is red since we have to find a real number x with the property specified in the conclusion in (2.4.2):

$$
\exists x \in \mathbb{R} \quad \text { such that } a x^{2}+b x+c<0 \text {. }
$$

In fact the redness of $x \in \mathbb{R}$ is the core of the redness of the conclusion in the implication in (2.4.2).

The colors indicate how to prove (2.4.2). We need to find a formula for a red number x in terms of the green numbers. To be more specific: For the given $a, b, c \in \mathbb{R}$ of which you know only that $a<0$, our task is to find a formula for $x \in \mathbb{R}$ in terms of $a, b, c \in \mathbb{R}$ for which we will be able to prove the following inequality

$$
a x^{2}+b x+c<0
$$

This is the shortest proof that I found. It is somewhat cryptic. I want you to understand that what I present is a correct proof. I will try to explain how I found it in the comment box after the proof.

Since the numbers $b, c \in \mathbb{R}$ are green, the following number is also green

$$
d=\max \{b, c, 0\} .
$$

In words, d is the largest of the three numbers b, c, and 0 . In particular we have the following inequalities

$$
\begin{equation*}
b \leq d, \quad c \leq d, \quad \text { and } \quad 0 \leq d . \tag{2.4.4}
\end{equation*}
$$

Set

$$
x=x_{0}=1-\frac{d}{a} .
$$

Now calculate

$$
\begin{aligned}
a\left(x_{0}\right)^{2}+b x_{0}+c & =a\left(1-\frac{d}{a}\right)^{2}+b\left(1-\frac{d}{a}\right)+c \\
& =a\left(1-2 \frac{d}{a}+\frac{d^{2}}{a^{2}}\right)+b-\frac{b d}{a}+c \\
& =a-2 d+\frac{d^{2}}{a}+b-\frac{b d}{a}+c \\
& =a+(b-d)+(c-d)+\frac{d(d-b)}{a} .
\end{aligned}
$$

Next, we consider the four summands in the preceding sum.
We have that $a<0$ by assumption. We have that $b-d \leq 0$, since $b \leq d$ by (2.4.4). We have that $c-d \leq 0$, since $c \leq d$ by (2.4.4). We have that $d(d-b) \geq 0$. since $d \geq 0$ and $d \geq b$ by (2.4.4). Since $a<0$ we have $d(d-b) / a \leq 0$. To summarize, we have

$$
a<0, \quad b-d \leq 0, \quad c-d \leq 0, \quad \frac{d(d-b)}{a} \leq 0, \quad x_{0}=1-\frac{d}{a} .
$$

Therefore

$$
a\left(x_{0}\right)^{2}+b x_{0}+c=a+(b-d)+(c-d)+\frac{d(d-b)}{a}<0
$$

Since

$$
x_{0}=1-\frac{\max \{b, c, 0\}}{a}
$$

is given in terms of a, b, and c, and

$$
a\left(x_{0}\right)^{2}+b x_{0}+c<0
$$

the proposition is proved.

Thinking that led to the above proof.

I first decided to study a simpler version of the quadratic expression with $a=-1$. Can I find a simple value of x for which

$$
-x^{2}+b x+c<0 ?
$$

That turned out to be hard. So, I decided to simplify further by making b and c equal and I called it d. Can I find a simple value of x for which

$$
-x^{2}+d x+d<0 ?
$$

This turned out to be simpler. I discovered that for $x=1+d$ we have

$$
-(1+d)^{2}+d(1+d)+d=-1-2 d-d^{2}+d+d^{2}+d=-1
$$

This was great. How to connect it to $-x^{2}+b x+c$? If I take $b \leq d$ and $c \leq d$, then I will have

$$
-x^{2}+b x+c \leq-x^{2}+d x+d \quad \text { provided that } x \text { is positive. }
$$

Since I need a positive x and we used $x=1+d$, if we choose a positive d this could all work out. This inspired me to take

$$
d=\max \{b, c, 0\} .
$$

Then

$$
\begin{aligned}
-(1+d)^{2}+b(1+d)+c & =-1-2 d-d^{2}+b+b d+c \\
& =-1+(b-d)+(c-d)+d(b-d) \\
& \leq-1
\end{aligned}
$$

How to incorporate a into this? Above, I considered $a=-1$. Where is -1 hiding in the above formulas? It turned out that $x=1-d /(-1)$ is the right answer. So, that is where $x=1-d / a$ comes from.

Proof of Proposition 2.4.2 that I wrote above is long. In that proof, I incorporated some thinking that could have been skipped. Below I present a shorter, so called bare-bones, version of the proof with just the essentials.

Bare-bones proof.

Proof. Let $a, b, c \in \mathbb{R}$ be arbitrary. We will prove the contrapositive of the implication in the proposition. Assume $a<0$. Set

$$
d=\max \{b, c, 0\} .
$$

As a consequence of this definition, the following inequalities hold

$$
\begin{equation*}
b \leq d, \quad c \leq d, \quad \text { and } \quad 0 \leq d \tag{2.4.5}
\end{equation*}
$$

Next we define a real number x_{0}. Set

$$
x_{0}=1-\frac{d}{a}
$$

At x_{0} the quadratic expression takes a negative value. To prove this claim, calculate:
$a\left(x_{0}\right)^{2}+b x_{0}+c=a\left(1-2 \frac{d}{a}+\frac{d^{2}}{a^{2}}\right)+b-\frac{b d}{a}+c=a+(b-d)+(c-d)+\frac{d(d-b)}{a}$.
By assumption we have $a<0$ and from (2.4.5) we have $b-d \leq 0, c-d \leq 0$, and $d(d-b) \geq 0$. Therefore

$$
a\left(x_{0}\right)^{2}+b x_{0}+c=a+(b-d)+(c-d)+\frac{d(d-b)}{a}<0
$$

The proposition is proved.

The preceding proposition is a part of the proof of the first equivalence in the following theorem which states three equivalences related to quadratic polynomials.

Theorem 2.4.3. Let $a, b, c \in \mathbb{R}$. Then the following equivalences hold

$$
\begin{gather*}
\forall x \in \mathbb{R} a x^{2}+b x+c \geq 0 \quad \Leftrightarrow \quad a \geq 0 \wedge c \geq 0 \wedge b^{2}-4 a c \leq 0 \tag{2.4.6}\\
\forall x \in \mathbb{R} a x^{2}+b x+c \leq 0 \quad \Leftrightarrow \quad a \leq 0 \wedge c \leq 0 \wedge b^{2}-4 a c \leq 0 \tag{2.4.7}\\
\left(\exists s \in \mathbb{R} a s^{2}+b s+c<0\right) \wedge\left(\exists t \in \mathbb{R} a t^{2}+b t+c>0\right) \quad \Leftrightarrow \quad b^{2}-4 a c>0 \tag{2.4.8}
\end{gather*}
$$

A complete proof of the equivalence (2.4.6) is on this webpage.

2.5. Exercises

In some exercises we use the interval notation. For a real number a we set

$$
\begin{aligned}
& \mathbb{R}_{<a}=\{x \in \mathbb{R}: x<a\} \\
& \mathbb{R}_{>a}=\{x \in \mathbb{R}: a<x\} .
\end{aligned}
$$

ExERCISE 2.5.1. Form the negation of each statement. Express the negation so that the word "not" or "no" does not occur.
(a) For every $x>1$, there exists a real number y such that $1<y<x$.
(b) For every $x>0$ there exists $y>0$ such that $x y<1$.
(c) For every $x>0$ there exists $y>0$ such that $x y>1$.
(d) There exists $y>0$ such that for every $x>0$ we have $x y>1$.
(e) There exists $x>0$ such that for all $y>0$ we have $x y \leq 1$.
(f) For every $y>0$ there exists $x>0$ such that $x y \leq 1$.

Exercise 2.5.2. The universe of discourse in this exercise is the set of all positive real numbers. For each statement formulate the negation and decide which one is true: the original statement or its negation. Provide a proof of your claim.
(i) $\forall a \forall b \exists c \quad c b>a$
(ii) $\forall x \exists y \forall z \quad(z>y) \Rightarrow(z x>1)$
(iii) $\forall x \exists y \forall z \quad(z>y) \Rightarrow\left(z^{2}>x\right)$

ExERCISE 2.5.3. The universe of discourse in this exercise is the set of all real numbers. For each statement formulate the negation and decide which one is true: the original statement or its negation. Provide a proof of your claim.
(i) $\forall a \forall b \exists c \quad c b>a$
(ii) $\forall x \exists y \forall z \quad(z>y) \Rightarrow(z x>1)$
(iii) $\forall x \exists y \forall z \quad(z>y) \Rightarrow\left(z^{2}>x^{2}\right)$

EXERCISE 2.5.4. Prove the following proposition

$$
\forall y \in(-\infty, 1) \quad \exists x \in(0,+\infty) \quad \text { such that } \quad y<\frac{x}{x+1}
$$

Exercise 2.5.5. Let $a, b \in \mathbb{R}$. Prove the following equivalence

$$
\forall x \in(-\infty, a) \quad x<b \quad \Leftrightarrow \quad \forall x \in(-\infty, a) \quad x \leq b
$$

CHAPTER 3

Sets and functions

3.1. Sets

3.1.1. Sets, element of a set, empty set. By a set S we mean a welldefined collection of objects such that it can be determined whether or not any particular object is an element of S or not. If x is an object in the set S we say that x is an element of S and write $x \in S$. The negation of $x \in S$ is $x \notin S$.

The empty set is the unique set which contains no elements. The empty set is denoted by the symbol \emptyset.

Generally, capital letters will be used to denote sets of objects and lower case letters to denote objects themselves. However, watch for deviations of this rule. We will be concerned mainly with sets of real numbers. The specially designed letters $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, and \mathbb{R} denote the following important sets of real numbers:
\mathbb{Z} denotes the set of all integers,
\mathbb{N} denotes the set of all positive integers (also caleed natural numbers),
\mathbb{Q} denotes the set of all rational numbers,
\mathbb{R} denotes the set of all real numbers.
A set can be described by:
$>$ a statement such as "Let A be the set of real solutions of the equation $x^{2}-x=0 . "$
$>$ a listing of all the elements; for example $A=\{0,1\}$.
$>$ the set builder notation: $A=\left\{x \in \mathbb{R}: x^{2}=x\right\}$, which builds a set from a description of its elements .
Notice the usage of the braces (or curly brackets) \{ and \} in the above examples to delimit sets. Notice the difference between a set and its elements. The number 0 is an important real number. However, $\{0\}$ denotes the set whose only element is 0 .

The expression $\left\{x \in \mathbb{R}: x^{2}=x\right\}$ is read as "the set of all real numbers x such that $x^{2}=x$ ". In this context, the colon ":" is used as an abbreviation for the phrase "such that". However, many books use the vertical bar symbol \| as an alternative to colon.
3.1.2. Subset, power set, equal sets. It is common to illustrate relationships among sets using pictures. In this section, we represent sets with elliptical shapes. To distinguish between different sets, we use parallel hatchings with positive and negative slopes. Such illustrations are known as Venn diagrams.

Definition 3.1.1. A set B is a subset of a set A if every element of B is also an element of A. In this case we write $B \subseteq A$ or $A \supseteq B$. Using the logic notation this
definition is expressed as follows:

$$
\begin{equation*}
B \subseteq A \quad \Leftrightarrow \quad \forall x \in U(x \in B \quad \Rightarrow \quad x \in A) \tag{3.1.1}
\end{equation*}
$$

The set U in equivalence (3.1.1) stands for the universe of discourse. That is, U is a set that contains all the objects that are considered in a given situation. For example, in the figures in which we illustrate relations between sets, the universe of discourse is bounded by the black rectangle.

Writing mathematical statements using formal logic notation, as in (3.1.1), enhances clarity. Also, it makes stating the negation easier. What does it mean that a set B is not a subset of A ? The negation of $B \subseteq A$, denoted by $B \nsubseteq A$, holds if and only if there exists $b \in B$ such that $b \notin A$. Or, stated as the negation of each side of the statement in (3.1.1),

$$
B \nsubseteq A \quad \Leftrightarrow \quad \exists x \in U(x \in B \wedge x \notin A)
$$

Recall that the implication $\mathrm{F} \Rightarrow q$ is always true, regardless of the truth value of q. Therefore, the statement

$$
\forall x \in U \quad x \in \emptyset \Rightarrow x \in A
$$

is true. Consequently, the empty set is a subset of each set. In particular, $\emptyset \subseteq \emptyset$. However, notice that $\emptyset \in \emptyset$ is not true.

Definition 3.1.2. Two sets A and B are equal, denoted $A=B$, if they contain precisely the same elements, that is, if and only if $A \subseteq B$ and $B \subseteq A$. Or, using formal logic notation,

$$
\begin{equation*}
A=B \quad \Leftrightarrow \quad(A \subseteq B \wedge B \subseteq A) \tag{3.1.2}
\end{equation*}
$$

The negation of each side of the equivalence in (3.1.2) yields to a characterization of two sets not being equal:

$$
A \neq B \quad \Leftrightarrow \quad(A \nsubseteq B \vee B \nsubseteq A)
$$

The preceding definition of the equality of sets implies that the sets $\{0,1,0\}$ and $\{0,1\}$ are equal. These sets are equal since they have the same elements. The fact that 0 is written twice in the first set is irrelevant. Also, the order in which elements are listed is irrelevant: $\{3,2,1\}=\{1,2,3\}$.

Equality is allowed in the definition of a subset. That is, a set is a subset of itself. If we wish to exclude this possibility we say B is a proper subset of A and we write $B \subsetneq A$ or $B \subset A$. Formally, $B \subsetneq A$ if and only if $x \in B$ implies $x \in A$ and there exists $a \in A$ such that $a \notin B$.

Definition 3.1.3. Let S be a set. The power set of S, denoted by $\mathcal{P}(S)$, is the set of all subsets of S.

Below is the power set of the set $\{-1,0,1\}$:

$$
\{\emptyset,\{-1\},\{0\},\{1\},\{-1,0\},\{-1,1\},\{0,1\},\{-1,0,1\}\} .
$$

We have

$$
\begin{aligned}
\mathcal{P}(\emptyset) & =\{\emptyset\} \\
\mathcal{P}(\{\emptyset\}) & =\{\emptyset,\{\emptyset\}\} \\
\mathcal{P}(\{\emptyset,\{\emptyset\}\}) & =\{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\} .
\end{aligned}
$$

3.1.3. Set operations. In this subsection, we introduce the following set operations: the set complement, the union, the intersection, the set difference, and the set symmetric difference. In the Venn diagrams, the resulting set of a set operation is represented in yellow with a teal border.

Definition 3.1.4. The complement of A is the set of all $x \in U$ such that $x \notin A$. The complement of A is denoted by A^{c}. Thus

$$
A^{c}=\{x \in U: x \notin A\} .
$$

Fig. 3. The complement (in yellow)

Fig. 4. The union (in yellow)

Definition 3.1.5. The union of A and B is the set of all $x \in U$ such that $x \in A$ or $x \in B$. The union of A and B is denoted $A \cup B$. Thus

$$
A \cup B=\{x \in U: x \in A \vee x \in B\} .
$$

REMARK 3.1.6. The conjunction "or" in mathematics is always in an inclusive sense, that is, it is allowed in the definition that x belong to both A and B. For example, $\{0,1,2,3\} \cup\{2,3,4,5\}=\{0,1,2,3,4,5\}$.

Definition 3.1.7. The intersection of A and B is the set of all x such that x is an element of A and x is an element of B. It is denoted $A \cap B$. Thus

$$
A \cap B=\{x \in U: x \in A \wedge x \in B\} .
$$

Two sets A and B are said to be disjoint if their intersection is the empty set, that is if $A \cap B=\emptyset$.

Fig. 5. The intersection (in yellow)

Fig. 6. Disjoint sets

Definition 3.1.8. The set difference between the sets A and B, denoted by $A \backslash B$, is the set of all x such that $x \in A$ and $x \notin B$. That is,

$$
A \backslash B=\{x \in U: x \in A \wedge x \notin B\}
$$

Fig. 7. A set difference (in yellow)

Fig. 8. A set difference (in yellow)

ExErcise 3.1.9. Let $A, B \subset U$. Prove that $A \cap B=\emptyset$ if and only if $B \subseteq A^{c}$.
Proof. Notice that $x \in A^{c}$ if and only if $x \notin A$. Or, what is equivalent, $x \notin A^{c}$ if and only if $x \in A$.

We will prove the equivalent statement: $A \cap B \neq \emptyset$ if and only if $B \nsubseteq A^{c}$. The following sequence of equivalences proves the claim:

$$
\begin{aligned}
A \cap B \neq \emptyset & \Leftrightarrow \exists x \in U \quad x \in A \cap B \\
& \Leftrightarrow \exists x \in U \quad x \in B \wedge x \in A \\
& \Leftrightarrow \exists x \in U \quad x \in B \wedge x \notin A^{c} \\
& \Leftrightarrow B \nsubseteq A^{c} . \square
\end{aligned}
$$

Exercise 3.1.10. Let $A, B \subset U$. Prove De Morgan's laws:

$$
(A \cup B)^{c}=A^{c} \cap B^{c} \quad \text { and } \quad(A \cap B)^{c}=A^{c} \cup B^{c} .
$$

ExErcise 3.1.11. Prove the distributive properties of the intersection and the union:
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \quad$ and $\quad A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Fig. 9. A symmetric set difference (in yellow)

Fig. 10. A three set symmetric difference (in yellow)

Exercise 3.1.12. The symmetric difference of two sets is defined as

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Prove that the symmetric difference is associative

$$
(A \Delta B) \Delta C=A \Delta(B \Delta C)
$$

3.1.4. Generalized unions and intersections. In this class we primarily consider sets of real numbers. Occasionally, we will also consider sets whose elements are sets of real numbers. When discussing sets of sets, it is customary to use the term "family" or "collection" instead of "set." For examples, see Section 4.3.

For any nonempty family of sets we can define the concepts of union and intersection. Let \mathcal{F} be a nonempty family of sets. We define the union of the family \mathcal{F} as

$$
\bigcup_{A \in \mathcal{F}} A=\bigcup\{A: A \in \mathcal{F}\}=\{x \in U: \exists A \in \mathcal{F} \quad x \in A\}
$$

We define the intersection of the family \mathcal{F} as

$$
\bigcap_{A \in \mathcal{F}} A=\bigcap\{A: A \in \mathcal{F}\}=\{x \in U: \forall A \in \mathcal{F} \quad x \in A\} .
$$

The concept of disjoint sets extends to families of sets. A family of sets is pairwise disjoint or mutually disjoint if, given any two distinct sets in the family, those two sets are disjoint.

Exercise 3.1.13. Let \mathcal{F} be a nonempty family of subsets of U. Prove De Morgan's laws:

$$
\begin{aligned}
& (\bigcup\{A: A \in \mathcal{F}\})^{c}=\bigcap\left\{A^{c}: A \in \mathcal{F}\right\}, \\
& (\bigcap\{A: A \in \mathcal{F}\})^{c}=\bigcup\left\{A^{c}: A \in \mathcal{F}\right\} .
\end{aligned}
$$

3.1.5. Ordered Pairs and the Cartesian Product of Sets. In this subsection, we introduce the concept of an ordered pair and the Cartesian product of two sets.

Definition 3.1.14. An ordered pair is a collection of two elements, which are not necessarily distinct, one of which is distinguished as the first coordinate (or the first entry) and the other as the second coordinate (or the second entry). The common notation for an ordered pair with the first coordinate a and the second coordinate b is (a, b). Ordered pairs are also called two-tuples.

The definition of an ordered pair given above is somewhat informal. The formal definition is: Let a and b be given objects. The ordered pair (a, b) of objects a and b is the set $\{\{a\},\{a, b\}\}$. However, it seems to me that this definition obscures more than it clarifies.

The ordered pairs $(0,1)$ and $(1,0)$ are different since their first entries are different. The ordered pairs $(0,0)$ and $(0,1)$ are different since their second entries are different. In general, $(a, b)=(x, y)$ if and only if $a=x$ and $b=y$.

Notice the usage of the round brackets (and) in the definition of an ordered pair. Please distinguish between $\{0,1\}$ and $(0,1):\{0,1\}$ is a set with two elements, $(0,1)$ is an ordered pair, an object defined by Definition 3.1.14.

Definition 3.1.15. The Cartesian product (or direct product) of two sets A and B, denoted $A \times B$, is the set of all possible ordered pairs whose first entry is a member of A and whose second entry is a member of B :

$$
A \times B=\{(a, b): a \in A \wedge b \in B\}
$$

The main example of a Cartesian product is $\mathbb{R} \times \mathbb{R}$, which provides a coordinate system for the plane.

Example 3.1.16. Let $A=\{1,2,3,4\}$ and let $C=\{\mathrm{R}, \mathrm{G}, \mathrm{B}\}$ be the set of primary colors where R stands for red, G for green, and B for blue. Then

$$
\begin{aligned}
& A \times C=\{(1, \mathrm{R}),(1, \mathrm{G}),(1, \mathrm{~B}),(2, \mathrm{R}),(2, \mathrm{G}),(2, \mathrm{~B}) \\
& \qquad(3, \mathrm{R}),(3, \mathrm{G}),(3, \mathrm{~B}),(4, \mathrm{R}),(4, \mathrm{G}),(4, \mathrm{~B})\} .
\end{aligned}
$$

IDEALLY, MATHEMATICAL TERMINOLOGY AND NOTATION SHOULD BE COMpletely free of ambiguities. We strive for absolute certainty. HowEVER, WE WILL SOON INTRODUCE THE CONCEPT OF AN OPEN INTERVAL, FOR Which we will use the same notation as for an ordered pair. The intended meaning should be clear from the context. Whenever you are UNCERTAIN, LOOK FOR THE RESOLUTION OF THE UNCERTAINTY.

3.2. Functions

We will start with a definition of a function as commonly presented in undergraduate mathematics classes. Let A and B be two nonempty sets. A function from A to B is a rule f that assigns exactly one element of B to each element of A.

A limitation of this definition is that it relies on the undefined concept of a "rule." It is not clear what constitutes a valid rule defining a function. To address this limitation, in the next subsection, we identify a function with its graph and describe the properties that a graph must have.
3.2.1. A formal definition of a function. Here we present the formal definition of a function.

Definition 3.2.1. Let A and B be nonempty sets. A function f with domain A and codomain B is a subset of the Cartesian product $A \times B$ such that the following two conditions are satisfied:
Fun 1. For every $x \in A$ there exists $y \in B$ such that the pair (x, y) belongs to f.
Fun 2. For all pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ in f the following implication holds: $x_{1}=x_{2}$ implies $y_{1}=y_{2}$.

A function f with domain A and codomain B is denoted by $f: A \rightarrow B$. If $f: A \rightarrow B$ is a function then instead of $(x, y) \in f$ we often write $y=f(x)$.

In the notation of formal logic conditions FUN 1 and FUN 2 read:
Fun 1. $\forall x \in A \quad \exists y \in B$ such that $(x, y) \in f$.
FUN 2. $\forall\left(x_{1}, y_{1}\right) \in f \forall\left(x_{2}, y_{2}\right) \in f \quad x_{1}=x_{2} \Rightarrow y_{1}=y_{2}$.
Since the contrapositive is equivalent to the original implication, condition FUN 2 can be expressed in an equivalent way:
Fun 2. $\forall\left(x_{1}, y_{1}\right) \in f \quad \forall\left(x_{2}, y_{2}\right) \in f \quad y_{1} \neq y_{2} \Rightarrow x_{1} \neq x_{2}$,
which is more convenient in some settings.
Definition 3.2.2. Let A and B be nonempty sets and let $f: A \rightarrow B$ be a function. The set

$$
\operatorname{ran}(f):=\{y \in B: \exists x \in A \quad(x, y) \in f\}=\{y \in B: \exists x \in A \quad y=f(x)\}
$$

is called the range of f.
Definition 3.2.3. Let A and B be nonempty sets. The set of all functions with domain A and codomain B is denoted by B^{A}.

The reason for the notation in the preceding definition will become clearer when you read Example 3.2.6 below.

In precalculus and calculus classes the sets A and B are typically subsets of \mathbb{R}, and functions are often defined by formulas. However, the sets A and B are often not explicitly specified. If this is the case, we consider that the domain of such a function is the largest subset of \mathbb{R} on which the formula is defined. This domain is called the natural domain of a function. For example, the natural domain of the reciprocal function $r(x)=1 / x$ is the set $\mathbb{R} \backslash\{0\}$.

If A and B are nonempty subsets of \mathbb{R}, condition FUN 2 is sometimes called the vertical line test. In this setting, condition Fun 2 states that no two distinct points on a vertical line can be on a graph of a function.

Definition 3.2.4. Let A be a nonempty set. The identity function with domain A and codomain A, denoted by id_{A}, is the function defined as

$$
\operatorname{id}_{A}:=\{(x, x) \in A \times A: x \in A\}
$$

or, in the traditional notation,

$$
\forall x \in A \quad \operatorname{id}_{A}(x)=x
$$

The identity function maps each element of A to itself.
Example 3.2.5. Consider the sets $A=\{1,2,3,4\}$ and $C=\{\mathrm{R}, \mathrm{G}, \mathrm{B}\}$ as in Example 3.1.16. The subset

$$
\{(1, \mathrm{G}),(2, \mathrm{R}),(3, \mathrm{G}),(4, \mathrm{~B})\}
$$

of $A \times C$ is a function in the sense of Definition 3.2.1. In the traditional notation this function is given by $f(1)=\mathrm{G}, f(2)=\mathrm{R}, f(3)=\mathrm{G}, f(4)=\mathrm{B}$. In contrast, the subset

$$
\{(1, \mathrm{~B}),(2, \mathrm{G}),(2, \mathrm{R}),(3, \mathrm{R}),(4, \mathrm{G})\}
$$

of $A \times C$ is not a function since $(2, \mathrm{G}),(2, \mathrm{R})$ are in the subset and $\mathrm{G} \neq \mathrm{R}$. Therefore, condition FUN 2 in Definition 3.2.1 does not hold for this subset.

Example 3.2.6. Let $A=\{0,1\}$ and let $C=\{\mathrm{R}, \mathrm{G}, \mathrm{B}\}$. The following is the list of all functions with domain A and codomain C :

$$
\begin{array}{lll}
\{(0, \text { R }),(1, \text { R })\}, & \{(0, \text { R }),(1, \text { G })\}, & \{(0, \text { R }),(1, \text { B })\}, \\
\{(0, \text { G }),(1, \text { R })\}, & \{(0, \text { G }),(1, \text { G })\}, & \{(0, \text { G }),(1, \text { B })\}, \\
\{(0, \text { B }),(1, \text { R })\}, & \{(0, \text { B }),(1, \text { G })\}, & \{(0, B),(1, \text { B })\} .
\end{array}
$$

Thus, there are 3^{2} functions with domain $\{0,1\}$ and codomain $\{R, G, B\}$.
3.2.2. New functions from old. Let A, B, C and D be nonempty sets and let $f: A \rightarrow B$ and $g: C \rightarrow D$ be given functions.

Definition 3.2.7. Assume that $B \subseteq C$. Then we define the composition of functions $f: A \rightarrow B$ and $g: C \rightarrow D$ to be the function $h: A \rightarrow D$ defined by

$$
\forall x \in A \quad h(x)=g(f(x))
$$

The notation for the composition $h: A \rightarrow D$ of functions $f: A \rightarrow B$ and $g: C \rightarrow D$ is $h=g \circ f$.

Definition 3.2.8. Assume that $A \cap C=\emptyset$. Then the function defined by

$$
\forall x \in A \cup C \quad h(x)=\left\{\begin{array}{lll}
f(x) & \text { if } & x \in A \\
g(x) & \text { if } & x \in C
\end{array}\right.
$$

is said to be a piecewise defined function with domain $A \cup C$ and codomain $B \cup D$.
The preceding two definitions relay on the standard functional notation $y=$ $f(x)$ as an equivalent expression to $(x, y) \in f$. To be completely rigorous we would need to prove that such defined functions are truly functions in the sense of Definition 3.2.1. The formal statements corresponding to the above definitions and corresponding proofs are given in the propositions below.

Proposition 3.2.9. Let A and B be nonempty sets and let $f: A \rightarrow B$ be a function with domain A and codomain B. Let C and D be nonempty sets and let $g: C \rightarrow D$ be a function with domain C and codomain D. Assume that $B \subseteq C$. Then the set

$$
\begin{equation*}
h=\{(x, z) \in A \times D: \exists y \in B \quad(x, y) \in f \wedge(y, z) \in g\} \tag{3.2.1}
\end{equation*}
$$

is a function with domain A and codomain D.
Proof. Assume the following facts:
$>A, B, C$ and D are nonempty sets,
$>f: A \rightarrow B$ is a function,
$>g: C \rightarrow D$ is a function,
$>B \subseteq C$.
It is very helpful to write down the specific green statements in the notation of formal logic:
Fun1f $\forall x \in A \quad \exists y \in B$ such that $(x, y) \in f$.
FUN2 $f \quad \forall\left(x_{1}, y_{1}\right) \in f \quad \forall\left(x_{2}, y_{2}\right) \in f \quad x_{1}=x_{2} \Rightarrow y_{1}=y_{2}$.
Fun1 $g \quad \forall y \in C \quad \exists z \in D$ such that $(x, y) \in g$.
Fun2 $g \quad \forall\left(y_{1}, z_{1}\right) \in g \quad \forall\left(y_{2}, z_{2}\right) \in g \quad y_{1}=y_{2} \Rightarrow z_{1}=z_{2}$.

G1 $B \subseteq C$.
G2 The definition of $h \subseteq A \times D$ in (3.2.1) is green.
We need to prove that $\lfloor: A \rightarrow D$ is a function. It is helpful to be specific what we need to prove:
Fun1 $h \quad \forall x \in A \quad \exists z \in D$ such that $(x, z) \in h$.
Fun2h $\forall\left(x_{1}, z_{1}\right) \in h \quad \forall\left(x_{2}, z_{2}\right) \in h \quad x_{1}=x_{2} \Rightarrow z_{1}=z_{2}$.
We first prove Fun1 h. Since statement Fun1 h involves the universal quantifier, we prove it by universal generalization. Let $x \in A$ be arbitrary. By Fun $1 f$, there exists $y \in B$ (label G3) such that $(x, y) \in f$ (label G4). By G1 and G3, we deduce $y \in C$ (label G5). By G5 and Fun1 g, there exists $z \in D$ (label G6) such that $(y, z) \in g$ (label G7). By G3, G4, G7 and G2, we deduce that $(x, z) \in h$. This completes proof of FUN1h.

Now we prove Fun2h. Since statement Fun2h involves the universal quantifiers, we prove it by universal generalization. Let $\left(x_{1}, z_{1}\right) \in h$ (label G8) and $\left(x_{2}, z_{2}\right) \in h$ (label G9) be arbitrary.

To prove Fun2h, we need to prove

$$
x_{1}=x_{2} \quad \Rightarrow \quad z_{1}=z_{2} .
$$

Assume $x_{1}=x_{2}$ (label G10).
By G8 and G2, there exists $y_{1} \in B$ such that $\left(x_{1}, y_{1}\right) \in f$ (label G11) and $\left(y_{1}, z_{1}\right) \in g$ (label G12).

By G9 and G2, there exists $y_{2} \in B$ such that $\left(x_{2}, y_{2}\right) \in f$ (label G13) and $\left(y_{2}, z_{2}\right) \in g$ (label G14).

By G10, G11, G13, and Fun2f, we deduce $y_{1}=y_{2}$ (label G15).
By G15, G12, G14, and Fun2 g, we deduce $z_{1}=z_{2}$. Thus, we have greenified the conclusion $z_{1}=z_{2}$ in FUN2h. This completes proof of FUn2h.

Proof that h is a function is complete.
Proposition 3.2.10. Let A and B be nonempty sets and let $f: A \rightarrow B$ be a function with domain A and codomain B. Let C and D be nonempty sets and let $g: C \rightarrow D$ be a function with domain C and codomain D. Assume that B and C are disjoint. Then the set

$$
\begin{equation*}
h=f \cup g \subseteq(A \cup C) \times(B \cup D) \tag{3.2.2}
\end{equation*}
$$

is a function with domain $A \cup C$ and codomain $B \cup D$.
Only the beginning of the proof below is in color. The rest of the proof I tried to make understandable without colors.

Proof. Let A, B, C and D be nonempty sets and assume:
Fun1f $\forall x \in A \quad \exists y \in B$ such that $(x, y) \in f$.
Fun2 $f \quad \forall\left(x_{1}, y_{1}\right) \in f \quad \forall\left(x_{2}, y_{2}\right) \in f \quad x_{1}=x_{2} \Rightarrow y_{1}=y_{2}$.
Fun1 $g \quad \forall y \in C \quad \exists z \in D$ such that $(x, y) \in g$.
Fun2 $g \quad \forall\left(y_{1}, z_{1}\right) \in g \quad \forall\left(y_{2}, z_{2}\right) \in g \quad y_{1}=y_{2} \Rightarrow z_{1}=z_{2}$.
G1 $A \cap C=\emptyset$.
G2 The definition of $h \subseteq(A \cup C) \times(B \cup D)$ in (3.2.2) is green.

We need to prove:
Fun1 $h \quad \forall x \in A \cup C \quad \exists y \in B \cup D$ such that $(x, y) \in h$.
Fun2h $\forall\left(x_{1}, y_{1}\right) \in h \quad \forall\left(x_{2}, y_{2}\right) \in h \quad x_{1}=x_{2} \Rightarrow y_{1}=y_{2}$.
We first prove Fun1h. Let $x \in A \cup C$ be arbitrary. By definition of $A \cup C$ we have $x \in A$ or $x \in C$. We consider two cases.

Case 1. $x \in A$. By Fun1 f, there exists $y \in B$ such that $(x, y) \in f$. Clearly $y \in B \cup D$ and $(x, y) \in f \cup g=h$. Thus, Fun1 h is proved in this case.

Case 2. $x \in C$. By Fun1 g, there exists $y \in D$ such that $(x, y) \in g$. Clearly $y \in B \cup D$ and $(x, y) \in f \cup g=h$. Thus, Fun $1 h$ is proved in this case as well.

Before moving to the next part, recall some facts. By Exercise 3.1.9 we have that G1 implies that $A \subseteq C^{c}$ and $C \subseteq A^{c}$. Also, since $f \subseteq A \times B$, we have

$$
(x, y) \in f \quad \Rightarrow \quad(x, y) \in A \times B \quad \Rightarrow \quad x \in A
$$

Passing to contrapositives we obtain

$$
x \notin A \quad \Rightarrow \quad(x, y) \notin A \times B \quad \Rightarrow \quad(x, y) \notin f
$$

Now we prove Fun2h. Let $\left(x_{1}, y_{1}\right) \in h$ and $\left(x_{2}, y_{2}\right) \in h$ be arbitrary. Assume $x_{1}=x_{2}$. Since $x_{1}=x_{2} \in A \cup C$, we consider two cases.

CASE 1. $x_{1}=x_{2} \in A$. Since $A \cap C=\emptyset$, we have that $A \subseteq C^{c}$. Therefore, $x_{1}=x_{2} \notin C$, and consequently, $\left(x_{1}, y_{1}\right) \notin g$ and $\left(x_{2}, y_{2}\right) \notin g$. Notice that

$$
\left(x_{1}, y_{1}\right) \in h=f \cup g \wedge\left(x_{1}, y_{1}\right) \notin g \quad \Rightarrow \quad\left(x_{1}, y_{1}\right) \in f
$$

and

$$
\left(x_{2}, y_{2}\right) \in h=f \cup g \wedge\left(x_{2}, y_{2}\right) \notin g \quad \Rightarrow \quad\left(x_{2}, y_{2}\right) \in f
$$

Hence, we have $\left(x_{1}, y_{1}\right) \in f$ and $\left(x_{2}, y_{2}\right) \in f$ and $x_{1}=x_{2}$. By Fun $2 f$, we deduce $y_{1}=y_{2}$. Thus, FUn2h is proved in this case.

Case 2 is very similar to Case 1.
CASE 2. $x_{1}=x_{2} \in C$. Since $A \cap C=\emptyset$, we have that $C \subseteq A^{c}$. Therefore, $x_{1}=x_{2} \notin A$, and consequently, $\left(x_{1}, y_{1}\right) \notin f$ and $\left(x_{2}, y_{2}\right) \notin f$. Notice that

$$
\left(x_{1}, y_{1}\right) \in h=f \cup g \wedge\left(x_{1}, y_{1}\right) \notin f \quad \Rightarrow \quad\left(x_{1}, y_{1}\right) \in g
$$

and

$$
\left(x_{2}, y_{2}\right) \in h=f \cup g \wedge\left(x_{2}, y_{2}\right) \notin f \quad \Rightarrow \quad\left(x_{2}, y_{2}\right) \in g
$$

Hence, we have $\left(x_{1}, y_{1}\right) \in g$ and $\left(x_{2}, y_{2}\right) \in g$ and $x_{1}=x_{2}$. By Fun $2 g$, we deduce $y_{1}=y_{2}$. Thus, Fun2h is proved in this case as well.

Proof that h is a function is complete.
Exercise 3.2.11. Let A, B, and C be nonempty sets. Let $f: A \rightarrow B$ and $g: A \rightarrow C$ be functions. The function $H: A \rightarrow B \times C$ with domain A and codomain $B \times C$ defined as

$$
\forall x \in A \quad H(x)=(f(x), g(x))
$$

is called the product extension of the pair of functions f and g.
Provide a formal definition of the product extension and prove that it is a function.
3.2.3. Surjection, injection, bijection (via flip). Let A and B be two nonempty sets. The flip operation on the Cartesian product $A \times B$ is an interesting one to discuss. This operation involves swapping the elements in an ordered pair (x, y) to get (y, x). Thus, the flip of the ordered pair $(x, y) \in A \times B$ is the ordered pair $(y, x) \in B \times A$.

Let us now apply the flip to a function $f: A \rightarrow B$, that is apply the flip to the subset $f \subseteq A \times B$. Denote by $p \subseteq B \times A$ the result of the flip. That is

$$
p=\{(y, x) \in B \times A:(x, y) \in f\}
$$

Or, in the notation of formal logic,

$$
\begin{equation*}
\forall x \in A \quad \forall y \in B \quad(y, x) \in p \quad \Leftrightarrow \quad(x, y) \in f . \tag{3.2.3}
\end{equation*}
$$

Is the flip $p \subseteq B \times A$ a function?

We answer this question by invoking Definition 3.2.1:

The flip $p \subseteq B \times A$ of a function $f \subseteq A \times B$ is a function with domain B and codomain A if and only if the following two conditions are satisfied:
FliP 1. $\forall y \in B \quad \exists x \in A$ such that $(y, x) \in p$.
FLIP 2. $\forall\left(y_{1}, x_{1}\right) \in p \quad \forall\left(y_{2}, x_{2}\right) \in p \quad y_{1}=y_{2} \Rightarrow x_{1}=x_{2}$.

Since we began by considering the function $f \subseteq A \times B$, it is of interest to restate conditions Flip 1 and Flip 2 in the preceding framed box in terms of the function $f \subseteq A \times B$. To do this, we use the equivalence in (3.2.3). In the restatement Inv 2 of FLIP 2 below we have replaced the implication with its contrapositive.

The conditions for the flip of a function to be a function.

The flip $p \subseteq B \times A$ of a function $f \subseteq A \times B$ is a function with domain B and codomain A if and only if the following two conditions are satisfied:

Inv 1. $\forall y \in B \quad \exists x \in A$ such that $(x, y) \in f$.
INV 2. $\forall\left(x_{1}, y_{1}\right) \in f \quad \forall\left(x_{2}, y_{2}\right) \in f \quad x_{1} \neq x_{2} \Rightarrow y_{1} \neq y_{2}$.

Conditions Inv 1 and Inv 2 are properties of the function $f \subseteq A \times B$. Recall the definition of the range of $f \subseteq A \times B$:

$$
\operatorname{ran}(f)=\{y \in B: \exists x \in A \quad(x, y) \in f\}
$$

and consider Inv 1. Clearly Inv 1 tells us that $\operatorname{ran}(f)=B$, the range of $f: A \rightarrow B$ is the entire codomain.

Condition Inv 2 tells us that the function $f: A \rightarrow B$ assigns distinct values in the codomain to distinct values of the domain. Both of these properties are important features of $f: A \rightarrow B$. Therefore the following definitions.

Definition 3.2.12. Let A and B be two nonempty sets. A function $f: A \rightarrow B$ is said to be a surjection if for every $y \in B$ there exists $x \in A$ such that $(x, y) \in f$. A function $f: A \rightarrow B$ is said to be an injection if for all $\left(x_{1}, y_{1}\right) \in f$, for all $\left(x_{2}, y_{2}\right) \in f$ we have $x_{1} \neq x_{2}$ implies $y_{1} \neq y_{2}$. A function $f: A \rightarrow B$ is said to be a bijection if it is both a surjection and an injection.

Remark 3.2.13. We could have stated briefly: A function $f: A \rightarrow B$ is called a surjection if it satisfies condition Inv 1; alternatively we say f is surjective. A
function $f: A \rightarrow B$ is called an injection if it satisfies condition Inv 2 ; alternatively we say f is injective. Some mathematicians use the synonyms onto function for a surjection and one-to-one function for an injection. I recommend that you ignore these synonyms.

In the preceding framed box, two conditions for $f \subseteq A \times B$ to be a function are "hidden." I want to have all four conditions for both $f \subseteq A \times B$ and its flip $p \subseteq B \times A$ to be functions.

Four conditions for a subset of $A \times B$ and its flip to be functions.

Both $f \subseteq A \times B$ and its flip $p \subseteq B \times A$ are functions if and only if the following four conditions are satisfied:
Fun 1. $\forall x \in A \quad \exists y \in B$ such that $(x, y) \in f$.
Fun 2. $\forall\left(x_{1}, y_{1}\right) \in f \quad \forall\left(x_{2}, y_{2}\right) \in f \quad x_{1}=x_{2} \Rightarrow y_{1}=y_{2}$.
Inv 1. $\forall y \in B \quad \exists x \in A$ such that $(x, y) \in f$.
INV 2. $\forall\left(x_{1}, y_{1}\right) \in f \quad \forall\left(x_{2}, y_{2}\right) \in f \quad x_{1} \neq x_{2} \Rightarrow y_{1} \neq y_{2}$.

Exploring the conditions in the preceding box.

Assume that all four conditions Fun 1, Fun 2, Inv 1, and Inv 2 in the preceding framed box are satisfied. I want to verbalize what each of these conditions is saying. Condition Inv 1 says that $f: A \rightarrow B$ is surjective. Condition Inv 2 says that $f: A \rightarrow B$ is injective. Condition Fun 1 says that $f: A \rightarrow B$ is defined on the entire domain A. There is no common name for this, so I will say f is total. Condition Fun 2 says that $f: A \rightarrow B$ assigns unique values. There is no common name for this, so I will say f is unival. I made up the last two names. I can state each of the conditions in terms of the flip $p: B \rightarrow A$, which is now a function. The conditions read $>\forall x \in A \quad \exists y \in B$ such that $(y, x) \in p . \quad p$ is surjective
$>\forall\left(y_{1}, x_{1}\right) \in p \forall\left(y_{2}, x_{2}\right) \in p \quad y_{1} \neq y_{2} \Rightarrow x_{1} \neq x_{2} . _p$ is injective
$>\forall y \in B \quad \exists x \in A$ such that $(y, x) \in p . \Longrightarrow p$ is total
$>\forall\left(y_{1}, x_{1}\right) \in p \quad \forall\left(y_{2}, x_{2}\right) \in p \quad y_{1}=y_{2} \Rightarrow x_{1}=x_{2} . \quad p$ is unival

Now the equivalent conditions in terms of $f: A \rightarrow B$, in the same order and with the names for f :
$>\forall x \in A \quad \exists y \in B$ such that $(x, y) \in f . \quad f$ is total
$>\forall\left(x_{1}, y_{1}\right) \in f \forall\left(x_{2}, y_{2}\right) \in f \quad x_{1}=x_{2} \Rightarrow y_{1}=y_{2}$._ f is unival
$>\forall y \in B \quad \exists x \in A$ such that $(x, y) \in f . \longrightarrow f$ is surjective
$>\forall\left(x_{1}, y_{1}\right) \in f \forall\left(x_{2}, y_{2}\right) \in f \quad x_{1} \neq x_{2} \Rightarrow y_{1} \neq y_{2}$. $\quad f$ is injective
This information is collected in the table below.

3.2.4. Invertible function, inverse.

Definition 3.2.14. Let A and B be two nonempty sets. A function $f: A \rightarrow B$ is said to be invertible if there exists a function $g: B \rightarrow A$ such that

$$
\begin{equation*}
\forall x \in A \quad g(f(x))=x \quad \text { and } \quad \forall y \in B \quad f(g(y))=y \tag{3.2.4}
\end{equation*}
$$

verbalize	$f: A \rightarrow B$		$p: B \rightarrow A$	verbalize
$f: A \rightarrow B$ is total	$\forall x \in A \exists y \in B$ such that $(x, y) \in f$	\Leftrightarrow	$\forall x \in A \exists y \in B$ such that $(y, x) \in g$	$p: B \rightarrow A$ is surjective
$f: A \rightarrow B$ is unival	$\forall\left(x_{1}, y_{1}\right) \in f \forall\left(x_{2}, y_{2}\right) \in f$ $x_{1}=x_{2} \Rightarrow y_{1}=y_{2}$.	\Leftrightarrow	$\forall\left(y_{1}, x_{1}\right) \in p \forall\left(y_{2}, x_{2}\right) \in p$ $y_{1} \neq y_{2} \Rightarrow x_{1} \neq x_{2}$.	$p: B \rightarrow A$ is injective
$f: A \rightarrow B$ is surjective	$\forall y \in B \exists x \in A$ such that $(x, y) \in f$	\Leftrightarrow	$\forall y \in B \exists x \in A$ such that $(y, x) \in p$	$p: B \rightarrow A$ is total
$f: A \rightarrow B$ is injective	$\forall\left(x_{1}, y_{1}\right) \in f \forall\left(x_{2}, y_{2}\right) \in f$ $x_{1} \neq x_{2} \Rightarrow y_{1} \neq y_{2}$.	\Leftrightarrow	$\forall\left(y_{1}, x_{1}\right) \in p \forall\left(y_{2}, x_{2}\right) \in p$ $y_{1}=y_{2} \Rightarrow x_{1}=x_{2}$.	$p: B \rightarrow A$ is unival

The function $g: B \rightarrow A$ that satisfies the conditions in (3.2.4) is called the inverse of $f: A \rightarrow B$. The inverse of $f: A \rightarrow B$ is denoted by $f^{-1}: B \rightarrow A$.

Recall that we defined the identity functions on nonempty sets:

$$
\operatorname{id}_{A}=\{(x, x) \in A \times A: x \in A\}, \quad \operatorname{id}_{B}=\{(y, y) \in B \times B: y \in B\}
$$

Notice that (3.2.4) can be restated as

$$
\begin{equation*}
g \circ f=\operatorname{id}_{A} \quad \text { and } \quad f \circ g=\operatorname{id}_{B} \tag{3.2.5}
\end{equation*}
$$

Theorem 3.2.15. Let A and B be nonempty sets. A function $f: A \rightarrow B$ is invertible if and only if $f: A \rightarrow B$ is a bijection.

Proof. First we prove

$$
f: A \rightarrow B \text { is a bijection } \Rightarrow f: A \rightarrow B \text { is invertible }
$$

Assume that $f: A \rightarrow B$ is a bijection. Then, by Definition 3.2.12, f satisfies conditions Inv 1 and Inv 2 introduced on 30. Recall that conditions Inv 1 and Inv 2 were introduced on page 30 to make sure that the flip of f, defined as

$$
p=\{(y, x) \in B \times A:(x, y) \in f\}
$$

is a function $p: B \rightarrow A$ with domain B and codomain A.
Recall the definition in Proposition 3.2.9,

$$
p \circ f=\{(x, z) \in A \times A: \exists y \in B \quad(x, y) \in f \wedge(y, z) \in p\} .
$$

Next we prove two set equalities $p \circ f=\operatorname{id}_{A}$ and $f \circ p$. First, $p \circ f=\operatorname{id}_{A}$. Since this is a set equality, we need to prove two inclusions $\operatorname{id}_{A} \subseteq p \circ f$ and $p \circ f \subseteq i d_{A}$. Let $x \in A$ be arbitrary. By condition Fun 1 for f there exists $y \in B$ such that $(x, y) \in f$. By definition of p we have $(y, x) \in p$. Since we have $y \in B,(x, y) \in f$, and $(y, x) \in p$, by definition of $p \circ f$ we have $(x, x) \in p \circ f$. This proves $\operatorname{id}_{A} \subseteq p \circ f$.

Next we prove $p \circ f \subseteq i d_{A}$. Let $(x, z) \in p \circ f$ be arbitrary. By definition of $p \circ f$, this means that there exists $y \in B$ such that $(x, y) \in f$ and $(y, z) \in p$. Since $(x, y) \in f$ is equivalent to $(y, x) \in p$, we have that $(y, x) \in p$ and $(y, z) \in p$. Since p is a function, that is by condition sc Flip 2 which is equivalent to Inv 2, we deduce that $z=x$. Hence $(x, z) \in p \circ f$ implies $(x, z)=(x, x)$, proving $p \circ f \subseteq i d_{A}$.

Proof of the equality $f \circ p=\operatorname{id}_{B}$ is similar and is left as exercise. Thus, we proved that the function p satisfies $p \circ f=\operatorname{id}_{A}$ and $f \circ p=\operatorname{id}_{B}$. By Definition 3.2.14, f is invertible, and its flip is its inverse.

Now we prove the converse

$$
f: A \rightarrow B \text { is invertible } \Rightarrow f: A \rightarrow B \text { is a bijection }
$$

Assume $f: A \rightarrow B$ is invertible. That is, assume that there exists a function g : $B \rightarrow A$ such that (3.2.4) holds.

We will prove that $f: A \rightarrow B$ is a surjection. Let $y \in B$ be arbitrary. Since $g: B \rightarrow A$ is a function, set $x=g(y)$. By the second identity in (3.2.4), we have $f(x)=f(g(y))=y$. Thus, for every $y \in B$ there exists $x \in A$ such that $f(x)=y$, proving that f is a surjection.

We will prove that $f: A \rightarrow B$ is a injection. We need to prove that for arbitrary $x_{1}, x_{2} \in A$ the following implication holds: $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$. Assume, $f\left(x_{1}\right)=f\left(x_{2}\right)$ and apply g to both sides of the last equality. Then we get $g\left(f\left(x_{1}\right)\right)=$ $g\left(f\left(x_{2}\right)\right)$. By the first identity in (3.2.4), we have $x_{1}=x_{2}$, proving that f is an injection.

Since f is both, a surjection and an injection, we proved that f is a bijection.
In the last proof, I mixed the graph notation for a function $f \subseteq A \times B$, where we write $(x, y) \in f$, with the traditional notation for a function $f: A \rightarrow B$, in which we write $y=f(x)$ as equivalent to $(x, y) \in f$. In the rest of these notes, we will predominantly use the traditional notation $f: A \rightarrow B$ to denote a function with domain A and codomain B and write $y=f(x)$ instead of $(x, y) \in f$.

In the next proposition, we prove that the composition of two bijections is a bijection.

Theorem 3.2.16. Let A, B and C be nonempty sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections. Then $g \circ f: A \rightarrow C$ is a bijection and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Proof. Assume that $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections. By Theorem 3.2.15, $f: A \rightarrow B$ is invertible, with inverse $f^{-1}: B \rightarrow A$, and $g: B \rightarrow C$ is invertible, with inverse $g^{-1}: C \rightarrow B$. Denote by $h: C \rightarrow A$ the function $f^{-1} \circ g^{-1}$. Let $x \in A$ be arbitrary, set $y=f(x)$ and calculate, starting with the definition of the composition $h \circ(g \circ f)$,

$$
\begin{aligned}
(h \circ(g \circ f))(x) & =h((g \circ f)(x)) \\
\square \text { by the def. of } g \circ f & =h(g(f(x))) \\
g, h \text { are funs and } y=f(x) & =h(g(y)) \\
h=f^{-1} \circ g^{-1} & =\left(f^{-1} \circ g^{-1}\right)(g(y)) \\
\text { by the def. of } f^{-1} \circ g^{-1} & =f^{-1}\left(g^{-1}(g(y))\right) \\
\text { Definition 3.2.14 applied to } g & =f^{-1}(y) \\
\hline f^{-1} \text { is a fun and } y=f(x) & =f^{-1}(f(x)) \\
\text { Definition 3.2.14 applied to } f & =x .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\forall x \in A \quad(h \circ(g \circ f))(x)=x \tag{3.2.6}
\end{equation*}
$$

that is $h \circ(g \circ f)=\mathrm{id}_{A}$.

Similarly, we can show that $(g \circ f) \circ h=\operatorname{id}_{B}$. Let $z \in C$ be arbitrary, set $y=g^{-1}(z)$, notice that $h(z)=f^{-1}\left(g^{-1}(z)\right)=f^{-1}(y)$, and calculate, starting with the definition of the composition $(g \circ f) \circ h$,

$$
\begin{aligned}
((g \circ f) \circ h)(z) & =(g \circ f)(h(z)) \\
g \circ f \text { is a fun and } h(z)=f^{-1}(y) & =(g \circ f)\left(f^{-1}(y)\right) \\
\text { by the def. of } g \circ f & =g\left(f\left(f^{-1}(y)\right)\right) \\
\text { Definition 3.2.14 applied to } f & =g(y) \\
g \text { is a fun and } y=g^{-1}(z) & =g\left(g^{-1}(z)\right) \\
\text { Definition 3.2.14 applied to } g & =z .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\forall z \in C \quad((g \circ f) \circ h)(z)=z \tag{3.2.7}
\end{equation*}
$$

that is $(g \circ f) \circ h=\mathrm{id}_{C}$.
Since we have established (3.2.6) and (3.2.7), it follows from Definition 3.2.14 that $g \circ f$ is invertible, with $h=f^{-1} \circ g^{-1}$ as its inverse. Consequently, Theorem 3.2.15 yields that $g \circ f: A \rightarrow C$ is also a bijection.

Next we restate the definitions of a surjection, an injection, and a bijection using the traditional notation of a function.

A function $f: A \rightarrow B$ with domain A and codomain B is a surjection if for every $y \in B$ there exist $x \in A$ such that $y=f(x)$. Another way of saying that $f: A \rightarrow B$ is a surjection is to say that the range of f is equal to B.

What does it mean that $f: A \rightarrow B$ is not a surjection? A function $f: A \rightarrow B$ is not a surjection if there exists $y \in B$ such that for all $x \in A$ we have $f(x) \neq y$.

A function $f: A \rightarrow B$ is an injection if, for all $x_{1}, x_{2} \in A$, we have that $x_{1} \neq x_{2}$ implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Note that the contrapositive of this implication is: for all $x_{1}, x_{2} \in A, f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$.

A function $f: A \rightarrow B$ is not an injection if there exist $x_{1}, x_{2} \in A$ such that $x_{1} \neq x_{2}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$.

A function $f: A \rightarrow B$ which is both an injection and a surjection is called bijection.

Recall that Theorem 3.2.15 states that a function $f: A \rightarrow B$ is a bijection if and only there exists a function $g: B \rightarrow A$ such that (3.2.4) holds. Thus, if we need to prove that a given function $f: A \rightarrow B$ is a bijection, an efficient way to accomplish this is to discover a function $g: B \rightarrow A$ for which we can verify (3.2.4). This, of course, amounts finding the inverse of f.

Example 3.2.17. There are only three functions listed in Example 3.2.6 which are not injections. Find them! There are no bijections. There are no surjections.

In mathematics, functions are often defined by formulas without specific names. Therefore, we also use the notation $f: x \mapsto f(x)$, where $x \in A$. For example, the notation $x \mapsto x^{2}$, where $x \in \mathbb{R}$, denotes the square function defined on \mathbb{R} without specifying its codomain.

Example 3.2.18. In this mixture of an example and exercise, we consider the squaring operation $x \mapsto x^{2}$ with $x \in \mathbb{R}$. We explore how properties of square being
a function, surjective, injective and bijective depend on the domain and codomain. We will consider the following sets as domains and codomains: the set \mathbb{R} of real numbers, the set \mathbb{Q} of rational numbers, the set $\mathbb{R}_{\geq 0}$ of all nonnegative real numbers, the set $\mathbb{Q} \geq 0$ of all nonnegative rational numbers.

In the table below I list the domains and codomains and ask you to fill-in the blank boxes. There are two boxes under each of the properties. The first box is for the statement Yes or No, for whether the property in the header holds or not. The second box is to state the level of mathematical sophistication that is needed to justify Yes or No answer, in the box to the left. Here one can use the digits from the set $\{1,2,3,4,5\}$, but to be thorough one should write an explanation in English.

dom	codom	function		surjection		injection		bijection	
\mathbb{R}	\mathbb{R}	Yes	1		level				level
\mathbb{R}	$\mathbb{R}_{\geq 0}$	Yes	2						
$\mathbb{R}_{\geq 0}$	$\mathbb{R}_{\geq 0}$	Yes	2						
\mathbb{Q}	\mathbb{Q}	Yes	1						
\mathbb{Q}	$\mathbb{Q}_{\geq 0}$	Yes	2					level	
$\mathbb{Q} \geq 0$	$\mathbb{Q} \geq 0$	Yes	2						level
\mathbb{Q}									

TABLE 1. Exploring square functions
3.2.5. Cantor's theorem. Let S be a nonempty set. in this subsection we explore the power set of S, the family of all subsets of S, denoted by $\mathcal{P}(S)$. We first prove that there exists a bijection with domain $\mathcal{P}(S)$ and range $\{0,1\}^{S}$, the set of all functions with domain S and codomain $\{0,1\}$.

Definition 3.2.19. Let S be a nonempty set. For a subset $A \subseteq S$ we define the indicator function of A, denoted by $\chi_{A}: S \rightarrow\{0,1\}$, to be the function

$$
\chi_{A}(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \in A \\
0 & \text { if } & x \in S \backslash A
\end{array}\right.
$$

A synonym for the term 'indicator function' is 'characteristic function'.
Recall that for nonempty sets X and Y by Y^{X}, we denote the set of all functions with domain X and codomain Y, see Definition 3.2.3. Thus, $\{0,1\}^{S}$ is the set of all functions with domain S and codomain $\{0,1\}$.

Proposition 3.2.20. Let S be a nonempty set. The function $\Phi: \mathcal{P}(S) \rightarrow\{0,1\}^{S}$ defined by

$$
\forall A \in \mathcal{P}(S) \quad \Phi(A)=\chi_{A}
$$

is a bijection.
Proof. Define the function $\Psi:\{0,1\}^{S} \rightarrow \mathcal{P}(S)$ by

$$
\forall f \in\{0,1\}^{S} \quad \Psi(f)=\{x \in S: f(x)=1\}
$$

Now we prove

$$
\forall A \in \mathcal{P}(S) \quad \Psi(\Phi(A))=A
$$

Let $A \subseteq S$ be arbitrary. Then

$$
\Psi(\Phi(A))=\Psi\left(\chi_{A}\right)=\left\{x \in S: \chi_{A}(x)=1\right\}=A
$$

where the first equality sign holds by the definition of Φ, the second by the definition of Φ, and the third by the definition of χ_{A}, which states that for $x \in S \chi_{A}(x)=1$ if and only if $x \in A$.

Now we prove

$$
\forall f \in\{0,1\}^{S} \quad \Phi(\Psi(f))=f
$$

Let $f \in\{0,1\}^{S}$ be arbitrary. Set

$$
A=\Psi(f)=\{x \in S: f(x)=1\}
$$

Then,

$$
\Phi(\Psi(f))=\Phi(A)=\chi_{A}=f
$$

where the first equality follows from the definition of A, the second by the definition of Φ, and the third again from the definition of A, and the fact that $f: S \rightarrow\{0,1\}$ has only two values 0 and 1, yielding

$$
(f(x)=1 \Leftrightarrow x \in A) \wedge(f(x)=0 \Leftrightarrow x \in S \backslash A)
$$

Since we have established that

$$
\forall A \in \mathcal{P}(S) \quad \Psi(\Phi(A))=A \quad \text { and } \quad \forall f \in\{0,1\}^{S} \quad \Phi(\Psi(f))=f
$$

it follows from Definition 3.2.14 that Φ is invertible, with Ψ as its inverse. Consequently, by Theorem 3.2.15, Φ is also a bijection.

Exercise 3.2.21. Let A, B and C be nonempty sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be surjections. Prove that $g \circ f: A \rightarrow C$ is a surjection.

Solution. Assume that $f: A \rightarrow B$ and $g: B \rightarrow C$ are surjections. To prove that $g \circ f: A \rightarrow C$ is a surjection we have to prove that for every $z \in C$ there exists $x \in A$ such that $g(f(x))=z$. Let $z \in C$ be arbitrary. Since $g: B \rightarrow C$ is a surjection, there exists $y \in B$ such that $g(y)=z$. Since $y \in B$ and as $f: A \rightarrow B$ is a surjection, there exists $x \in A$ such that $f(x)=y$. Now we have $g(f(x))=g(y)=z$, where the first equality holds since $f(x)=y$ and g is a function, and the second since $g(y)=z$.

Exercise 3.2.22. Let A and B be nonempty sets. Consider the following statement: There exists a surjective function $f: A \rightarrow B$.
(a) Translate the above statement from mathematical English into the notation of formal logic, using sets and quantifiers.
(b) State the negation of the given statement, both in mathematical English and in the notation of formal logic, using sets and quantifiers.

Solution. It is convenient to use the notation B^{A} for the set of all functions with domain A and codomain B. Then the given statement in the notation of formal logic reads:

$$
\exists f \in B^{A} \quad \forall y \in B \quad \exists x \in A \quad y=f(x)
$$

The negation in English is: For an arbitrary function $g: A \rightarrow B, g$ is not a surjection. But the statement " g is not a surjection" is itself a negation which
means: There exists $b \in B$ such that for all $x \in A$ we have $g(x) \neq b$. Hence the negation of the given statement in the notation of formal logic is:

$$
\forall g \in B^{A} \quad \exists b \in B \quad \forall x \in A \quad f(x) \neq b
$$

It is important to note that $b \in B$ in the last statement depends on g. In a proof of the last statement one would start from an arbitrary g and then try to construct $b \in B$ with the desired property.

Theorem 3.2.23 (Cantor's Theorem). Let S be a nonempty set. Then there is no surjection with domain S and codomain $\mathcal{P}(S)$.

Proof. We have to prove

$$
\forall \Theta: S \rightarrow \mathcal{P}(S) \quad \exists G \subseteq S \quad \forall x \in S \quad \Theta(x) \neq G
$$

Let $\Theta: S \rightarrow \mathcal{P}(S)$ be an arbitrary function. We will prove that Θ is not a surjection. We need to discover a subset G of S such that

$$
\forall x \in S \quad \Theta(x) \neq G
$$

The definition of such subset G is truly ingenious, due to Georg Cantor,

$$
G=\{s \in S: s \notin \Theta(s)\} .
$$

Now we need to prove that for all $x \in S$ we have $\Theta(x) \neq G$. Let $x \in S$ be arbitrary. We consider two cases: Case 1: $x \in G$ and Case 2: $x \notin G$. First consider Case 1 in which we assume $x \in G$. In this case $x \notin \Theta(x)$. Hence, we have $x \in G$ and $x \notin \Theta(x)$. Consequently $G \nsubseteq \Theta(x)$. Therefore $\Theta(x) \neq G$, in this case.

Now consider Case 2. In this case $x \notin G$. By the definition of G we have $x \in \Theta(x)$. Thus, $x \notin G$ and $x \in \Theta(x)$. Consequently, $\Theta(x) \nsubseteq G$. Therefore, $\Theta(x) \neq G$, in this case as well.

In both cases, $\Theta(x) \neq G$. Since $x \in S$ was arbitrary, we have proved that for all $x \in S$ we have $\Theta(x) \neq G$. Therefore, the subset G of S is not in the range of Θ. Since $\Theta: S \rightarrow \mathcal{P}(S)$ was an arbitrary function with domain S and codomain $\mathcal{P}(S)$, we have proved that there does not exist a surjection from S to $\mathcal{P}(S)$.

Exercise 3.2.24. Prove that the function $f: \mathbb{R} \backslash\{1\} \rightarrow \mathbb{R} \backslash\{1\}$, defined by $f(x)=\frac{x}{x-1}$ for all $x \in \mathbb{R} \backslash\{1\}$, is a bijection.

ExErcise 3.2.25. Let $f: A \rightarrow B$ and $g: A \rightarrow C$. We define the product extension of the pair (f, g) as

$$
H: A \rightarrow B \times C, \quad \forall x \in A \quad H(x)=(f(x), g(x))
$$

(i) Show that if f or g is injective, then H is also injective.
(ii) Is it true that if f and g are surjective, then H is surjective?

Exercise 3.2.26. Let A, B and C be nonempty sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be injections. Prove that $g \circ f: A \rightarrow C$ is an injection.

Exercise 3.2.27. Let A, B and C be nonempty sets. Let $f: A \rightarrow B, g: B \rightarrow C$. Prove that if $g \circ f$ is an injection, then f is an injection.

Exercise 3.2.28. Let A, B and C be nonempty sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be surjections. Prove that $g \circ f: A \rightarrow C$ is a surjection.

Exercise 3.2.29. Let A, B and C be nonempty sets and let $f: A \rightarrow B, g: B \rightarrow$ C. Prove that if $g \circ f$ is a surjection, then g is a surjection.

Exercise 3.2.30. Let A, B and C be nonempty sets and let $f: A \rightarrow B, g: B \rightarrow$ C and $h: C \rightarrow A$ be three functions. Prove that if any two of the functions $h \circ g \circ f$, $g \circ f \circ h, f \circ h \circ g$ are injections and the third is a surjection, or if any two of them are surjections and the third is an injection, then f, g, and h are bijections.

3.3. Cardinality of sets

Counting is the most fundamental mathematical operation used in everyday life. It allows us to compare the numbers of elements in different sets and identify sets with the same number of elements. In everyday life, this concept is typically applied to finite sets. However, in mathematics, we seek to extend the concept of having the 'same number of elements' to infinite sets. The concept of bijection plays a crucial role in achieving this extension. Instead of stating that two sets have the same number of elements, we express this equivalence using the term 'same cardinality'.

Definition 3.3.1. Two nonempty sets A and B have the same cardinality if there exists a bijection $f: A \rightarrow B$ with domain A and range B. The fact that two sets have the same cardinality is denoted by $\operatorname{card}(A)=\operatorname{card}(B)$ or $A \sim B$.

Proposition 3.3.2. The equality of cardinalities is reflexive, symmetric and transitive. That is, for arbitrary nonempty sets A, B, and C we have
(i) $\operatorname{card}(A)=\operatorname{card}(A)$.
(ii) $\operatorname{card}(A)=\operatorname{card}(B)$ if and only if $\operatorname{card}(B)=\operatorname{card}(A)$.
(iii) If $\operatorname{card}(A)=\operatorname{card}(B)$ and $\operatorname{card}(B)=\operatorname{card}(C)$, then $\operatorname{card}(A)=\operatorname{card}(C)$.

Proof. (i) Since $\operatorname{id}_{A}: A \rightarrow A$ is a bijection, we have $\operatorname{card}(A)=\operatorname{card}(A)$.
(ii) Assume $\operatorname{card}(A)=\operatorname{card}(B)$. Then there exists a bijection $f: A \rightarrow B$. By Theorem 3.2.15, f is invertible, and its inverse $f^{-1}: B \rightarrow A$ is a bijection. Therefore, $\operatorname{card}(B)=\operatorname{card}(A)$. The converse is proved similarly.
(iii) Assume $\operatorname{card}(A)=\operatorname{card}(B)$ and $\operatorname{card}(B)=\operatorname{card}(C)$. Then there exist bijections $f: A \rightarrow B$ and $g: B \rightarrow C$. By Theorem 3.2.16, the composition $g \circ f: A \rightarrow C$ is a bijection. Therefore, $\operatorname{card}(A)=\operatorname{card}(C)$.

Proposition 3.3.3. Let A, B, C, D be nonempty sets such that

$$
A \cap C=\emptyset, \quad B \cap D=\emptyset
$$

and

$$
\operatorname{card}(A)=\operatorname{card}(B), \quad \operatorname{card}(C)=\operatorname{card}(D)
$$

Then $\operatorname{card}(A \cup C)=\operatorname{card}(B \cup D)$.
Proof. Assume that A, B, C, D be nonempty sets such that $A \cap C=\emptyset, B \cap$ $D=\emptyset, \operatorname{card}(A)=\operatorname{card}(B)$, and $\operatorname{card}(C)=\operatorname{card}(D)$. Then there exist bijections $f: A \rightarrow B$ and $g: C \rightarrow D$.

By Theorem 3.2.15, $f: A \rightarrow B$ and $g: C \rightarrow D$ are invertible. Let $f^{-1}: B \rightarrow A$ and $g^{-1}: D \rightarrow C$ be their inverses. Let

$$
h: A \cup C \rightarrow B \cup D, \quad \forall x \in A \cup C \quad h(x)=\left\{\begin{array}{lll}
f(x) & \text { if } & x \in A \\
g(x) & \text { if } & x \in C
\end{array}\right.
$$

be a piecewise defined function as in Definition 3.2.8, see also Proposition 3.2.10. Since $B \cap D=\emptyset$, we can define the piecewise function

$$
k: B \cup D \rightarrow A \cup C, \quad \forall y \in B \cup D \quad k(y)=\left\{\begin{array}{lll}
f^{-1}(y) & \text { if } & y \in B \\
g^{-1}(y) & \text { if } & y \in D
\end{array}\right.
$$

The following two functional equalities hold: $k \circ h=\mathrm{id}_{A \cup C}$ and $h \circ k=\operatorname{id}_{B \cup D}$. We leave proofs of these equalities to the reader. With these equalise proven, Theorem 3.2.15 yields that $h: A \cup C \rightarrow B \cup D$ is a bijection. Therefore,

$$
\operatorname{card}(A \cup C)=\operatorname{card}(B \cup D)
$$

Definition 3.3.4. Let A and B be sets. If there exists a subset $C \subseteq B$ such that $\operatorname{card}(A)=\operatorname{card}(C)$, then we write $\operatorname{card}(A) \leq \operatorname{card}(B)$ and say that the cardinality of A is less than or equal to the cardinality of B. If $\operatorname{card}(A) \neq \operatorname{card}(B)$ and $\operatorname{card}(A) \leq \operatorname{card}(B)$, then we write $\operatorname{card}(A)<\operatorname{card}(B)$.

A fundamental result about cardinalities is the following theorem of Cantor.
Theorem 3.3.5 (Cantor's Theorem). Let S be a nonempty set. Then

$$
\operatorname{card}(S)<\operatorname{card}(\mathcal{P}(S))
$$

That is, there exists an injection $F: S \rightarrow \mathcal{P}(S)$ and there is no bijection from S to $\mathcal{P}(S)$.

Proof. Consider the function $\Psi: S \rightarrow \mathcal{P}(S)$ defined by

$$
\forall x \in S \quad \Psi(x)=\{x\}
$$

The function $\Psi: S \rightarrow \mathcal{P}(S)$ is an injection. To prove this claim, let $x_{1}, x_{2} \in S$ be such that $x_{1} \neq x_{2}$. Then, $\Psi\left(x_{1}\right) \neq \Psi\left(x_{1}\right)$, since $x_{1} \in \Psi\left(x_{1}\right)$ and $x_{1} \notin \Psi\left(x_{2}\right)$.

Denote by \mathcal{R} the range of Ψ. That is,

$$
\mathcal{R}=\{\{x\} \in \mathcal{P}(S): x \in S\}
$$

Then the function $\Psi: S \rightarrow \mathcal{R}$ is a bijection. Therefore, $\operatorname{card}(S)=\operatorname{card}(\mathcal{R})$. Since $\mathcal{R} \subseteq \mathcal{P}(S)$, this proves that $\operatorname{card}(S) \leq \operatorname{card}(\mathcal{P}(S))$.

In Theorem 3.2.23 we proved that there is no surjection with domain S and codomain $\mathcal{P}(S)$. Consequently, there is no bijection with domain S and codomain $\mathcal{P}(S)$. Hence, $\operatorname{card}(S) \neq \operatorname{card}(\mathcal{P}(S))$. Therefore, $\operatorname{card}(S)<\operatorname{card}(\mathcal{P}(S))$.

Exercise 3.3.6. Let A and B be nonempty sets. Prove that $\operatorname{card}(A) \leq \operatorname{card}(B)$ if and only if there exists an injection $f: A \rightarrow B$.

Exercise 3.3.7. Let A and B be nonempty sets. Prove that $\operatorname{card}(A) \leq \operatorname{card}(B)$ if and only if there exists a surjection $f: B \rightarrow A$.

Exercise 3.3.8. Let A, B, C be nonempty sets. Prove that $\operatorname{card}(A) \leq \operatorname{card}(B)$ and $\operatorname{card}(B) \leq \operatorname{card}(C)$ implies that $\operatorname{card}(A) \leq \operatorname{card}(C)$.

REmARK 3.3.9. The following natural implication holds:

$$
\operatorname{card}(A) \leq \operatorname{card}(B) \quad \text { and } \quad \operatorname{card}(B) \leq \operatorname{card}(A) \quad \Rightarrow \quad \operatorname{card}(A)=\operatorname{card}(B)
$$

A proof of this implication is not easy. This implication is known as the Cantor-Bernstein-Schröder theorem, which we state below in an equivalent form.

Theorem 3.3.10 (Cantor-Bernstein-Schröder). Let A and B be nonempty sets. If there exist injections $f: A \rightarrow B$ and $g: B \rightarrow A$, then there exists a bijection $h: A \rightarrow B$.

A proof of this theorem requires more background knowledge than is currently available to us, so we will postpone it.

CHAPTER 4

The set \mathbb{R} of real numbers

4.1. Axioms for the set \mathbb{R} of real numbers

All concepts that we will study in this course have their roots in the set of real numbers. We assume that you are familiar with some basic properties of the real numbers \mathbb{R} and of its subsets \mathbb{N}, \mathbb{Z}, and \mathbb{Q}. However, in order to clarify exactly what we need to know about \mathbb{R}, we set down its basic properties (called axioms) and some of their consequences. Below are sixteen axioms of \mathbb{R}.

The set of real numbers is a nonempty set \mathbb{R} that satisfies the following axioms:

Axiom 1 (AE: Addition Exists). There exists a function $+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, called addition. For $a, b \in \mathbb{R}$, the value of + at the pair (a, b), called the sum of a and b, is denoted by $a+b$.

Axiom 2 (AA: Addition is Associative). For all $a, b, c \in \mathbb{R}$ we have $a+(b+$ $c)=(a+b)+c$.
Axiom 3 (AC: Addition is Commutative). For all $a, b \in \mathbb{R}$ we have $a+b=$ $b+a$.
Axiom 4 (AZ: Addition has 0 (Zero)). There exists $0 \in \mathbb{R}$ such that for all $a \in \mathbb{R}$ we have $a+0=a$.

Axiom 5 (AO: Addition has Opposites). For every $a \in \mathbb{R}$ there exists $x \in \mathbb{R}$ such that $a+x=0$. Such $x \in \mathbb{R}$ is denoted by $-a$ and it is called the opposite of a.

Axiom 6 (ME: Multiplication Exists). There exists a function $\cdot: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, called multiplication. For $a, b \in \mathbb{R}$, the value of • at the pair (a, b), called the product of a and b, is denoted by $a \cdot b$ or simply $a b$.
Axiom 7 (MA: Multiplication is Associative). For all $a, b, c \in \mathbb{R}$ we have $a(b c)=(a b) c$.
Axiom 8 (MC: Multiplication is Commutative). For all $a, b \in \mathbb{R}$ we have $a b=b a$.
Axiom 9 (MO: Multiplication has 1 (One)). There exists $1 \in \mathbb{R}$ such that $1 \neq 0$ and for all $a \in \mathbb{R}$ we have $1 \cdot a=a$

Axiom 10 (MR: Multiplication has Reciprocals). For every $a \in \mathbb{R} \backslash\{0\}$ there exists $x \in \mathbb{R}$ such that $a x=1$. Such $x \in \mathbb{R}$ is denoted by $\frac{1}{a}$ and it is called the reciprocal of a.

Axiom 11 (DL: Distributive Law). For all $a, b, c \in \mathbb{R}$ we have $a(b+c)=$ $a b+a c$.

Axiom 12 (OE: Order Exists). For all $a, b \in \mathbb{R}$ such that $a \neq b$ we have $a<b$ exclusive or $b<a$. (The symbol $a \leq b$ stands for $a<b$ exclusive or $a=b$.)
Axiom 13 (OT: Order is Transitive). For all $a, b, c \in \mathbb{R}$ we have that $a<b$ and $b<c$ implies $a<c$.

Axiom 14 (OA: Order respects Addition). For all $a, b, c \in \mathbb{R}$ we have that $a<b$ implies $a+c<b+c$.

Axiom 15 (OM: Order respects Multiplication). For all $a, b, c \in \mathbb{R}$ we have that $a<b$ and $0<c$ implies $a c<b c$.

Axiom 16 (CA: Completeness Axiom). If A and B are nonempty subsets of \mathbb{R} such that for all $a \in A$ and for all $b \in B$ we have $a \leq b$, then there exists $c \in \mathbb{R}$ such that for all $a \in A$ and for all $b \in B$ we have $a \leq c$ and $c \leq b$.

The end of axioms

All statements about real numbers that are studied in beginning mathematical courses can be deduced from these sixteen axioms.

The formulation of the Completeness Axiom given as Axiom 16 is not standard. This formulation is from the book Mathematical analysis by Vladimir Zorich, published by Springer in 2004. Zorich's formulation is easier to state and it is equivalent to the standard formulation of the Completeness Axiom. The Completeness Axiom in the notation of formal logic reads as follows:

Axiom $16(\mathbf{C A}) . ~ A \subset \mathbb{R}, A \neq \emptyset, B \subset \mathbb{R}, B \neq \emptyset$,

$$
\forall a \in A \forall b \in B \quad a \leq b \quad \Rightarrow \quad \exists c \in \mathbb{R} \quad \forall a \in A \quad \forall b \in B \quad a \leq c \wedge c \leq b
$$

4.1.1. Axioms of a field. The first eleven axioms relate to the addition and multiplication in \mathbb{R}. These axioms are called the axioms of a field. A triple of a nonempty set, an addition operation written as $a+b$, and a multiplication operation written as $a \cdot b$, which satisfy Axioms 1 through 11 is called a field.

Notice that the only specific real numbers mentioned in the axioms are 0 and 1.
Example 4.1.1. Consider the set $\{0,1\}$. Define functions \oplus (a special addition instead of +) and \odot (a special multiplication instead of $\cdot)$ as follows

$$
0 \oplus 0=1 \oplus 1=0,0 \oplus 1=1 \oplus 0=1 \quad \text { and } \quad 0 \odot 0=0 \odot 1=1 \odot 0=0,1 \odot 1=1
$$

The set $\{0,1\}$ with the operations \oplus and \odot satisfies all Axioms 1 through 11. In the language of algebra, $\{0,1\}$ with operations \oplus and \odot is a field.

Axioms AA and MA are called associative laws and Axioms AC and MC are commutative laws. Axiom DL is the distributive law; this law justifies 'factorization' and 'multiplying out' which you learned in college algebra. The basic algebraic properties of \mathbb{R} can be proved solely on the basis of the field axioms. We illustrate this claim by the following exercise.

Theorem 4.1.2. The following statements hold:
(i) For all $a, b, c \in \mathbb{R}$ we have: $a+c=b+c$ implies $a=b$.
(ii) For all $a \in \mathbb{R}$ we have $a \cdot 0=0$.
(iii) For all $a \in \mathbb{R}$ we have: $-a=a$ if and only if $a=0$.
(iv) For all $a \in \mathbb{R}$ we have $-(-a)=a$.
(v) For all $a, b \in \mathbb{R}$ we have $-(a+b)=(-a)+(-b)$.
(vi) For all $a, b \in \mathbb{R}$ we have $(-a) b=-(a b)$.
(vii) For all $a, b \in \mathbb{R}$ we have $(-a)(-b)=a b$.
(viii) For all $a \in \mathbb{R} \backslash\{0\}$ we have $-\frac{1}{a}=\frac{1}{-a}$.
(ix) For all $a \in \mathbb{R} \backslash\{0\}$ we have: $\frac{1}{a} \neq 0$ and $\frac{1}{\frac{1}{a}}=a$.
(x) For all $a, b, c \in \mathbb{R}$ we have: ac $=b c$ and $c \neq 0$ implies $a=b$.
(xi) For all $a, b \in \mathbb{R}$ we have: $a b=0$ if and only if $a=0$ or $b=0$.
(xii) For all $a, b \in \mathbb{R}$ we have: $a \neq 0$ and $b \neq 0$ implies $\frac{1}{a b}=\frac{1}{a} \frac{1}{b}$.

REmARK 4.1.3. The 'only if' part of (iii) in Theorem 4.1.2 cannot be proved using Axioms 1 through 11, see Example 4.1.1. To prove that $-a=a$ implies that $a=0$, we need results from Subsection 4.1.2.

Proof of Theorem 4.1.2. Let $a, b, c \in \mathbb{R}$ ne arbitrary. (i) Assume that $a+$ $c=b+c$. By Axiom ME adding any $x \in \mathbb{R}$ to both sides of the equality leads to $(a+c)+x=(b+c)+x$. It follows from Axiom AA that $a+(c+x)=b+(c+x)$. By Axiom AO, there exists $-c \in \mathbb{R}$ such that $c+(-c)=0$. Choose $x=-c$. Then $a=a+0=a+(c+(-c))=b+(c+(-c))=b+0=b$.
(ii) By Axiom ME, $a \cdot 0$ is a real number. Set $a \cdot 0=w \in \mathbb{R}$. By Axiom AO, there exists $-w \in \mathbb{R}$ such that $w+(-w)=0$. By Axiom AZ, we have $0+0=0$. By Axiom ME, $a \cdot(0+0)=a \cdot 0$. By Axiom DL, we have $a \cdot 0+a \cdot 0=a \cdot 0$. Since we set $a \cdot 0=w$, we proved $w+w=w$. By Axiom AE, $(w+w)+(-w)=w+(-w)$. By Axiom AA, $w+(w+(-w))=w+(-w)$. Since by Axiom AO, $w+(-w)=0$, we have $w+0=0$. By Axiom AZ, $w=0$. Hence, $a \cdot 0=0$.

Do the 'if' part of (iii) as an exercise. The 'only if' part of (iii) is done in Subsection 4.1.2.

Do (iv) and (v) as exercises.
(vi) By Axiom AO there exists $-a \in \mathbb{R}$ such that $a+(-a)=0$. By Axiom ME, it follows that $(a+(-a)) b=0 \cdot b$. By Axiom DL and part (ii) of this theorem, it follows that $a b+(-a) b=0$. Since $a b \in \mathbb{R}$, by Axiom AO there exists $-(a b) \in \mathbb{R}$ such that $a b+(-(a b))=0$. Using Axiom AC we conclude that $(-a) b+a b=-(a b)+a b$. By part (i) of this proof we conclude that $(-a) b=-(a b)$.

Do (vii), (ix), and (x) as exercises.

The 'if' part of (xi) follows from (ii). Now we prove the 'only if' part of (xi). That is, we prove the implication:

$$
a b=0 \quad \Rightarrow \quad a=0 \vee b=0
$$

The implication $p \Rightarrow(q \vee r)$ is equivalent to $p \wedge(\neg q) \Rightarrow r$. Therefore we will prove the equivalent implication

$$
a b=0 \wedge a \neq 0 \Rightarrow b=0
$$

Assume that $a b=0$ and $a \neq 0$. By Axiom MR, there exists $\frac{1}{a} \in \mathbb{R}$ such that $a \frac{1}{a}=1$. Multiplying both sides of $a b=0$ by $\frac{1}{a}$ we get $\frac{1}{a}(a b)=\frac{1}{a} \cdot 0$. By Axioms MA, MR, and MO, we have

$$
\frac{1}{a}(a b)=\left(\frac{1}{a} a\right) b=1 \cdot b=b .
$$

By part (ii) of this theorem,

$$
\frac{1}{a} \cdot 0=0
$$

Hence

$$
b=\frac{1}{a}(a b)=\frac{1}{a} \cdot 0=0 .
$$

Do (xii) as an exercise.
REmARK 4.1.4 (On notation). Let $a, b \in \mathbb{R}$. Instead of $a+(-b)$ we write $a-b$. Instead of $a \frac{1}{b}$ we write $\frac{a}{b}$ or a / b or $a b^{-1}$.
4.1.2. Axioms of order in a field. Axioms 12 through 15 establish the order on the set \mathbb{R}. Axiom OE, referred to as the trichotomy law, distinguishes exactly one of three possible relations between any pair of numbers. The property of order in Axiom OT is known as transitive law. Axiom OA highlights the harmony between addition and order, ensuring that adding numbers preserves the order. Axiom OM defines a special relationship between multiplication and order. A field with an order satisfying Axioms 12 through 15 is called an ordered field.

REMARK 4.1.5 (On notation). For $a, b \in \mathbb{R}$, the notation $a \leq b$ stands for the statement: $a<b$ exclusive or $a=b$. The notation $a>b$ means $b<a$, while $a \geq b$ means $b \leq a$. For $a, b, c \in \mathbb{R}$, the notation $a<b<c$ stands for $a<b$ and $b<c$. Similarly, $a \leq b<c$ stands for $a \leq b$ and $b<c, a<b \leq c$ stands for $a<b$ and $b \leq c, a \leq b \leq c$ stands for $a \leq b$ and $b \leq c$.

Definition 4.1.6. A number $x \in \mathbb{R}$ is positive if $x>0$. A number $x \in \mathbb{R}$ is negative if $x<0$. A number $x \in \mathbb{R}$ is nonnegative if $x \geq 0$. A number $x \in \mathbb{R}$ is nonpositive if $x \leq 0$. We introduce the following notation:

$$
\begin{array}{ll}
\mathbb{R}_{>0}:=\{x \in \mathbb{R}: x>0\}, & \mathbb{R}_{<0}:=\{x \in \mathbb{R}: x<0\} \\
\mathbb{R}_{\geq 0}:=\{x \in \mathbb{R}: x \geq 0\}, & \mathbb{R}_{\leq 0}:=\{x \in \mathbb{R}: x \leq 0\}
\end{array}
$$

Theorem 4.1.7. The following statements hold:
(i) For all $a, b \in \mathbb{R}$ we have: $a<b$ implies $-b<-a$.
(ii) For all $a, b, c \in \mathbb{R}$ we have: $a<b$ and $c<0$ implies $b c<a c$.
(iii) For all $a \in \mathbb{R}_{>0}$, for all $b \in \mathbb{R} \backslash\{0\}$ we have: $b>0$ if and only if $a b>0$.
(iv) For all $a \in \mathbb{R} \backslash\{0\}$ we have $a a>0$.
(v) $0<1$.
(vi) For all $a \in \mathbb{R} \backslash\{0\}$ we have: $a>0$ if and only if $\frac{1}{a}>0$.
(vii) For all $a, b \in \mathbb{R} \backslash\{0\}$ we have: $0<a<b$ if and only if $0<\frac{1}{b}<\frac{1}{a}$.

Proof. Let $a, b, c \in \mathbb{R}$ be arbitrary. (i) Assume $a<b$. By Axiom OA we have $a+(-b)<b+(-b)$. Hence, $(-b)+a<0$. Using Axiom OA again, we conclude that $((-b)+a)+(-a)<0+(-a)$, and consequently $-b<-a$.

Do (ii) as an exercise.
Now we prove (iii). Assume $a>0$ and $b \neq 0$. This assumption is used throughout this part of the proof. Since $a \neq 0$ and $b \neq 0$, by Theorem 4.1.2 (xi), it follows that $a b \neq 0$. The implication: 'If $b>0$, then $a b>0$ ' is a special case of Axiom OM. Next we deal with the implication 'If $a b>0$, then $b>0$.' It turns out that the contrapositive is easier to prove. The negation of $b>0$ is $b \leq 0$. But, it is assumed that $b \neq 0$. Thus, with this assumption, the negation of $b>0$ is $b<0$. Similarly, the negation of $a b>0$ is $a b<0$. Hence, the contrapositive of 'If $a b>0$, then $b>0$.' is 'If $b<0$, then $a b<0$.' The last implication follows directly from part (ii). This completes the proof of (iii).
(iv) Consider two cases: $a>0$ and $a<0$. If $a>0$, then (iii) implies that $a^{2}>0$. If $a<0$, then, by (i), $-0<-a$, and since $-0=0$ we have $-a>0$. By the first part of this proof, we conclude that $(-a)(-a)>0$. By part (vii) of Theorem 4.1.2 we have $(-a)(-a)=a a$. Therefore $a a>0$ for all $a \neq 0$.

Do (v) as an exercise.
To prove (vi) we assume $a>0$. By Axiom MR, $a \frac{1}{a}=1$. By Axiom MO, $1 \neq 0$. Hence, $a \frac{1}{a} \neq 0$. By Theorem 4.1.2 (xi) $\frac{1}{a} \neq 0$ and by (v) $1>0$. Now we can apply the 'if' part of (iii). (Take $b=1 / a$ in (iii).) We conclude that $a \frac{1}{a}=1>0$ implies $\frac{1}{a}>0$. This proves (vi).

Do (vii) as an exercise.
Remark 4.1.8 (Mnemonic Tool: Pizza-Party). The content of Theorem 4.1.7(vii) I call the Pizza-Party Principle. Why? In the inequality

$$
\frac{1}{b}<\frac{1}{a}
$$

1 stands for a pizza, a and b stand for the number of people at two parties. Smaller party will give you more pizza, there is not doubt about that.

Definition 4.1.9. We define the following eight real numbers

$$
\begin{array}{llll}
2:=1+1, & 3:=2+1, & 4:=3+1, & 5:=4+1 \\
6:=5+1, & 7:=6+1, & 8:=7+1, & 9:=8+1
\end{array}
$$

The numbers $0,1,2,3,4,5,6,7,8,9$ are called digits.
In the preceding definition we implied that the digits are distinct numbers. The next exercise justifies this claim.

Exercise 4.1.10. Prove the inequalities:

$$
0<1<2<3<4<5<6<7<8<9
$$

ExERCISE 4.1.11. For all $a, b \in \mathbb{R}$ we have: $a<b$ implies there exists $c \in \mathbb{R}$ such that $a<c<b$.

Solution. Let $a, b \in \mathbb{R}$ be arbitrary and assume that $a<b$. By Axiom OA, adding a and then b to both sides of the inequality yields

$$
2 a<a+b \quad \wedge \quad a+b<2 b .
$$

Since $\frac{1}{2}>0$, by Axiom OM we deduce

$$
a<\frac{1}{2}(a+b) \quad \wedge \quad \frac{1}{2}(a+b)<b .
$$

Hence,

$$
a<\frac{1}{2}(a+b)<b .
$$

Thus, we can take $c=\frac{1}{2}(a+b)$.
The following four exercises deal with squares of real numbers. As usual, for $a \in \mathbb{R}$, a product $a a$ is called a square and it is denoted by a^{2}.

ExErcise 4.1.12. Let $a \in \mathbb{R}$. Prove that the equation $x^{2}=a$, has at most two solutions in \mathbb{R}.

Solution. Consider the set

$$
S=\left\{x \in \mathbb{R}: x^{2}=a\right\} .
$$

If $S=\emptyset$, then the statement is true. Now assume that $S \neq \emptyset$ and let $b \in S$. From $b \in S$, we deduce that $b \in \mathbb{R}$ and $b^{2}=a$. Since $b \in \mathbb{R}$, by Axiom AO, $-b \in \mathbb{R}$. Next we will prove

$$
\begin{equation*}
S=\{b,-b\} . \tag{4.1.1}
\end{equation*}
$$

Let $c \in S$. Then $c^{2}=a$, and therefore $c^{2}=b^{2}$. Consequently, $c^{2}-b^{2}=0$. Using Axioms 2 through 11 and properties in Theorem 4.1.2 we can prove that $(c-b)(c+b)=c^{2}-b^{2}$. Therefore $(c-b)(c+b)=c^{2}-b^{2}=0$. Theorem 4.1.2 (xi) implies that $c-b=0$ or $c+b=0$. Thus $c=b$ or $c=-b$. This proves

$$
\begin{equation*}
S \subseteq\{b,-b\} \tag{4.1.2}
\end{equation*}
$$

Next we prove $\{b,-b\} \subseteq S$. By assumption, $b \in S$. Since $(-b)^{2}=b^{2}$, we have $(-b)^{2}=a$. Hence $-b \in S$. Therefore

$$
\begin{equation*}
\{b,-b\} \subseteq S \tag{4.1.3}
\end{equation*}
$$

Relations (4.1.2) and (4.1.3) imply equality (4.1.1). Since the set $\{b,-b\}$ has at most two elements the statement is proved.

ExErcise 4.1.13. For all $x, y \in \mathbb{R}_{\geq 0}$ we have: $x<y$ if and only if $x^{2}<y^{2}$.
Solution.
EXERCISE 4.1.14. For all $a, x \in \mathbb{R}$ we have: $a>1$ and $a>x^{2}$ imply $a>x$.
EXERCISE 4.1.15. For all $s, t \in \mathbb{R}$ we have: $s \neq t$ implies $(s+t)^{2}>4 s t$.

Exercise 4.1.16. Let $a, b, c, d \in \mathbb{R}$.
(i) Prove or disprove the statement: If $a<b$ and $c<d$, then $a-c<b-d$.
(ii) If you disproved the statement in (i), change the assumptions about c and d to make a correct statement. Prove your new statement.

Exercise 4.1.17. Let $\alpha \in \mathbb{R}$. Prove the following statement

$$
\forall x>0 \quad \alpha \leq x \quad \Rightarrow \quad \alpha \leq 0
$$

The properties of real numbers proved in this section are essential. Many of them are truly elementary (although sometimes hard TO PROVE) AND YOU CAN (AND I WILL) USE SUCH PROPERTIES IN PROOFS WITHout any justification. But, when you are using more subtle properties (LIKE ONES IN EXERCISES 4.1.13, 4.1.14, OR 4.1.16) you Should State EXPLICITLY WHICH PROPERTY YOU ARE USING AND EITHER PROVE IT, OR POST IT AS A QUESTION TO THE CLASS.

4.2. Four functions to start with

There are only two specific real numbers mentioned in Axioms 1 through 16. These real numbers are 0 (zero) and 1 (one). The number -1 is implicitly mentioned in Axiom AO. Therefore the following two functions are of interest.

Definition 4.2.1. The unit step function, denoted by us : $\mathbb{R} \rightarrow \mathbb{R}$ and shown in Figure 1, is defined as follows:

$$
\forall x \in \mathbb{R} \quad \operatorname{us}(x):= \begin{cases}0 & \text { if } \quad x<0 \\ 1 & \text { if } x \geq 0\end{cases}
$$

Definition 4.2.2. The sign function, denoted by sgn : $\mathbb{R} \rightarrow \mathbb{R}$ and shown in Figure 2, is defined as follows

$$
\forall x \in \mathbb{R} \quad \operatorname{sgn}(x):=\left\{\begin{array}{rll}
-1 & \text { if } x<0 \\
0 & \text { if } & x=0 \\
1 & \text { if } & x>0
\end{array}\right.
$$

Fig. 1. The unit step function

Fig. 2. The sign function

Definition 4.2.3. The absolute value function, denoted by abs : $\mathbb{R} \rightarrow \mathbb{R}$ and shown in Figure 3, is defined as

$$
\forall x \in \mathbb{R} \quad \operatorname{abs}(x):=x \operatorname{sgn}(x)
$$

We will also use the standard notation $\operatorname{abs}(x)=|x|$. The number $|x|$ is called the absolute value of the number x.

Definition 4.2.4. The Rectified Linear Unit function, denoted here by rlu : $\mathbb{R} \rightarrow$ \mathbb{R} and shown in Figure 4, is defined as

$$
\forall x \in \mathbb{R} \quad \operatorname{rlu}(x):=x \operatorname{us}(x)
$$

The most important of these four functions is the absolute value function. Why is the absolute value so important? Its importance lies in its geometric significance. The common geometric representation of real numbers is as points on a straight line. This representation is achieved by choosing a point on the line to represent 0 and another point to represent 1. Consequently, every real number corresponds to a point on this line, commonly called the real number line, and every point on the number line corresponds to a real number. With this geometric representation, the absolute value of x, denoted $|x|$, represents the distance of the number x from the number 0 . Generally, we introduce this definition:

Definition 4.2.5. Let $a, b \in \mathbb{R}$. We define

$$
\operatorname{dist}(a, b):=|b-a| .
$$

The number $\operatorname{dist}(a, b)$ is called the distance between the real numbers a and b.
The other three functions are there for the absolute value not to feel lonely. Additionally, it is beneficial to have a library of simple functions that can be used in examples. The sign function is in such nice harmony with the absolute value that I defined the sign function first, then used it to define the absolute value. Furthermore, one could argue that the sign function is simpler, as it takes only three values; its range is the set $\{-1,0,1\}$.

The unit step function is a bridge to indicator functions introduced in Definition 3.2.19. It is the indicator function of the set $\mathbb{R}_{\geq 0}$ of all nonnegative real numbers. Although, I have not seen the unit step function discussed in undergraduate mathematics classes, it does appear in physical and engineering applications, sometimes under the name Heaviside function, and sometimes assuming a different value at 0 .

Finally, by multiplying the independent variable x with the unit step functionsimilarly to how multiplying x by the sign function yields the absolute value -we obtain the Rectified Linear Unit (ReLU) function. This function has become quite famous due to its extensive use in deep learning applications. The pronunciation of ReLU, and our notation rlu, is /'rEl.u:/.

The concept of a minimum and a maximum is in general useful, and it is closely related to the absolute value, as we can see in the theorem and exercises below.

Definition 4.2.6. Let $a, b \in \mathbb{R}$. We define

$$
\min \{a, b\}:=\left\{\begin{array}{l}
a \text { if } a<b, \\
b \text { if } b \geq a,
\end{array} \quad \max \{a, b\}:=\left\{\begin{array}{l}
b \text { if } a<b, \\
a \text { if } b \geq a
\end{array}\right.\right.
$$

The number $\min \{a, b\}$ is called the minimum of a and b, and the number $\max \{a, b\}$ is called the maximum of a and b.

Theorem 4.2.7. The following statements hold:
(i) For all $x \in \mathbb{R}$ we have $|x|=\max \{x,-x\}$.
(ii) For all $x \in \mathbb{R}$ we have $|x| \geq 0$.
(iii) For all $x \in \mathbb{R}$ we have: $|x|=0$ if and only if $x=0$.
(iv) For all $x \in \mathbb{R}$ we have $||x||=|x|$.
(v) For all $x \in \mathbb{R}$ we have $|-x|=|x|$.
(vi) For all $x, y \in \mathbb{R}$ we have $|x y|=|x||y|$.
(vii) For all $x \in \mathbb{R}$, for all $y \in \mathbb{R} \backslash\{0\}$ we have $\left|\frac{x}{y}\right|=\frac{|x|}{|y|}$.

REmARK 4.2.8. Many of the proofs involving the absolute value function are done by cases. In simple settings these are efficient proofs. However, in more complicated situations listing all possible cases might be challenging. Therefore, pay attention to the proofs which are not done by cases.

Proof of Theorem 4.2.7. (i) Let $x \in \mathbb{R}$ be arbitrary. We consider three cases, $x=0, x>0$, and $x<0$. If $x=0$, since $|0|=0$ and $\max \{0,-0\}=0$, so the claim holds in this case. If $x>0$, then $|x|=x$, and $-x<0$, so $\max \{x,-x\}=x$. Thus, $|x|=\max \{x,-x\}$, in this case as well. If $x<0$, then $|x|=-x$, and $-x>0$, so $\max \{x,-x\}=-x$. Hence, $|x|=\max \{x,-x\}$ in this case as well, completing proof of (i).
(vii) Let $y \in \mathbb{R} \backslash\{0\}$ be arbitrary and first prove that $|1 / y|=1 /|y|$. If $y>0$, by Theorem 4.1.7(vi) we have $1 / y>0$, hence $|1 / y|=1 / y=1 /|y|$. If $y<0$, then $-y>0$, so by the first part of the proof, $|1 /(-y)|=1 /|-y|$. By Theorem 4.1.2(viii) $1 /(-y)=-(1 / y)$. With this equality, part (v) yields, $|1 / y|=1 /|y|$ in this case as well. Now the general case of (vii) follows from (vi). Let $x \in \mathbb{R}$ be arbitrary. Then

$$
\left|\frac{x}{y}\right|=\left|x \frac{1}{y}\right|=|x|\left|\frac{1}{y}\right|=|x| \frac{1}{|y|}=\frac{|x|}{|y|},
$$

where the first equality sign follows from 'on notation' Remark 4.1.4, the second equality sign follows from (vi), the third from the first part of this proof for (vii), and the last again from Remark 4.1.4.

Theorem 4.2.9. The following statements hold:
(i) For all $x \in \mathbb{R}$ we have $x \leq|x|$ and $-x \leq|x|$.
(ii) For all $x \in \mathbb{R}$ we have $-|x| \leq x \leq|x|$.
(iii) For all $x, a \in \mathbb{R}$ we have: $|x| \leq a$ if and only if $-a \leq x \leq a$.
(iv) For all $x, a \in \mathbb{R}$ we have: $|x| \geq a$ if and only if $x \leq-a$ or $x \geq a$.

Proof.

Theorem 4.2.10 (Triangle Inequality). The following statements hold:
(I) For all $a, b \in \mathbb{R}$ we have $|a+b| \leq|a|+|b|$.
(II) For all $a, b \in \mathbb{R}$ we have: $|a+b|=|a|+|b|$ if and only if $a b \geq 0$.
(III) For all $a, b \in \mathbb{R}$ we have: $|a+b|<|a|+|b|$ if and only if $a b<0$.
(IV) For all $x, y \in \mathbb{R}$ we have $||x|-|y|| \leq|x-y|$.
(V) For all $x, y, z \in \mathbb{R}$ we have $|x-z| \leq|x-y|+|y-z|$. In terms of the distance introduced in Definition 4.2.5, this inequality can be expressed as:

$$
\operatorname{dist}(x, z) \leq \operatorname{dist}(x, y)+\operatorname{dist}(y, z)
$$

Proof. (I) Let $a, b \in \mathbb{R}$ be arbitrary. By Theorem 4.2 .9 (i) we have $a \leq|a|$ and $b \leq|b|$. By an straightforward consequence of Axiom OA we have $a+b \leq|a|+|b|$. Similarly, $-a \leq|a|,-b \leq|b|$, and $(-a)+(-b) \leq|a|+|b|$. Since by Theorem 4.1.2(v, $(-a)+(-b)=-(a+b)$, we have $-(a+b) \leq|a|+|b|$. Hence, we proved two inequalities $a+b \leq|a|+|b|$ and $-(a+b) \leq|a|+|b|$. Consequently,

$$
\max \{a+b,-(a+b)\} \leq|a|+|b|
$$

Now, (I) follows from Theorem 4.2.7(i).
(IV) Let $x, y \in \mathbb{R}$ be arbitrary. Set $a=x-y$ and $b=y$ in the triangle inequality proved in (I). Since by Axioms AA, AZ and AO we have

$$
a+b=(x-y)+y=x+((-y)+y)=x
$$

the triangle inequality in (I) yields

$$
|x| \leq|x-y|+|y|
$$

By Axioms AA, AZ and AO we deduce

$$
\begin{equation*}
|x|-|y| \leq|x-y| \tag{4.2.1}
\end{equation*}
$$

Using similar ideas we prove

$$
\begin{equation*}
-(|x|-|y|) \leq|x-y| \tag{4.2.2}
\end{equation*}
$$

By properties of the maximum, inequalities (4.2.1) (4.2.2) imply

$$
\max \{|x|-|y|,-(|x|-|y|)\} \leq|x-y|
$$

Now, (IV) follows from Theorem 4.2.7(i).
The inequalities in Theorem 4.2 .10 are forms the Triangle Inequality. The inequalities in (I) and (V) are called the Triangle Inequality, while (IV) is called the reverse triangle inequality. Item (II) provides necessary and sufficient condition for the equality to hold, while item (III) provides necessary and sufficient condition for the strict inequality.

Exercise 4.2.11. For all $a, x \in \mathbb{R}$ we have: If $|x-a| \leq 1$, then $|x| \leq 1+|a|$.
ExErcise 4.2.12. For all $a, x \in \mathbb{R}$ we have: If $|x-a| \leq 1$, then $|x+a| \leq 1+2|a|$.
Exercise 4.2.13. For all $a, x \in \mathbb{R}$ the following implication holds:

$$
|x-a| \leq 1 \quad \Rightarrow \quad\left|x^{2}-a^{2}\right|<(1+2|a|)|x-a|
$$

ExErcise 4.2.14. For all $x \in \mathbb{R}$ and all $a \in \mathbb{R} \backslash\{0\}$ the following implication holds:

$$
|x-a|<\frac{|a|}{2} \quad \Rightarrow \quad|x|>\frac{|a|}{2}
$$

Exercise 4.2.15. Prove the following identities:
(i) For all $a, b \in \mathbb{R}$ we have $|a-b|=\max \{a, b\}-\min \{a, b\}$.
(ii) For all $a, b \in \mathbb{R}$ we have $a+b=\max \{a, b\}+\min \{a, b\}$.
(iii) For all $a, b \in \mathbb{R}$ we have $\max \{a, b\}=\frac{1}{2}(a+b+|a-b|)$.
(iv) For all $a, b \in \mathbb{R}$ we have $\min \{a, b\}=\frac{1}{2}(a+b-|a-b|)$.

Exercise 4.2.16. Prove the following identities:
(i) For all $x, y \in \mathbb{R}$ we have $\max \{x, y\}=x+(y-x)$ us $(y-x)$
(ii) For all $x, y \in \mathbb{R}$ we have $\min \{x, y\}=y+(x-y)$ us $(y-x)$.

Exercise 4.2.17. For all $x \in \mathbb{R}$ we have $\operatorname{sgn}(x)=\mathrm{us}(x)-\mathrm{us}(-x)$.
EXERCISE 4.2.18. For all $x \in \mathbb{R}$ we have us $(x)=1-\frac{1}{2}(\operatorname{sgn}(x)-1)(\operatorname{sgn}(x))$.
Exercise 4.2.19. For all $x \in \mathbb{R}$ we have $|x|=x(2 \mathrm{us}(x)-1)$.

4.3. Intervals

In Exercise 4.1 .11 we proved that for arbitrary real numbers $a, b \in \mathbb{R}$ such that $a<b$ there exists $c \in \mathbb{R}$ such that $a<c<b$. This fact proves that all the sets defined below are nonempty.

Definition 4.3.1. Let a and b be real numbers such that $a<b$. We will use the following notation and terminology:

$$
\begin{aligned}
& {[a, b] }:=\{x \in \mathbb{R}: a \leq x \wedge x \leq b\} \\
&(a, b):=\{x \in \mathbb{R}: a<x \wedge x<b\} \\
& {[a, b) }:=\{x \in \mathbb{R}: a \leq x \wedge x<b\} \\
&(a, b]:=\{x \in \mathbb{R}: a<x \wedge \text { called a closed interval, an open interval, } \\
& \text { is half-open interval, } \\
& \text { is }=b\} \\
& \text { is called a half-open interval. }
\end{aligned}
$$

We also define four types of unbounded intervals:

$$
\begin{array}{ll}
\mathbb{R}_{\geq a}:=\{x \in \mathbb{R}: x \geq a\} & \text { is called a closed unbounded interval, } \\
\mathbb{R}_{>a}:=\{x \in \mathbb{R}: x>a\} & \text { is called an open unbounded interval } \\
\mathbb{R}_{\leq a}:=\{x \in \mathbb{R}: x \leq a\} & \text { is called an unbounded closed interval, } \\
\mathbb{R}_{<a}:=\{x \in \mathbb{R}: x<a\} & \text { is called an unbounded open interval. }
\end{array}
$$

The entire set of real numbers \mathbb{R} is itself a special unbounded interval.
Geometric illustrations of these intervals are given in Figures 5 through 12.
REMARK 4.3.2 (Long remark on notation). Common notation for infinite intervals is as follows:

$$
\begin{array}{ll}
\mathbb{R}_{\leq a}=(-\infty, a], & \mathbb{R}_{<a}=(-\infty, a), \quad \mathbb{R}=(-\infty, \infty) \\
\mathbb{R}_{\geq a}=[a, \infty), & \mathbb{R}_{>a}=(a, \infty)
\end{array}
$$

Although the notation using \mathbb{R} with a subscript is not that common, I prefer it. One reason for this preference is that a superficial reader seeing the infinity symbol, ∞, next to a real number a might mistakenly deduce that infinity is also a special kind of real number.

It might be too much to expect from a superficial reader to explore how treating ∞ as a real number would lead to contradictions in our axiomatic system.

What property must ∞ have if it were considered a real number in \mathbb{R} ? Certainly, the property

$$
\begin{equation*}
\forall x \in \mathbb{R} \quad x \leq \infty \tag{4.3.1}
\end{equation*}
$$

is essential if ∞ were to be considered a real number. By Axiom AE we would have $\infty+1 \in \mathbb{R}$. By Axiom OA, applied to $0<1$ from Theorem 4.1.7(v), it would follow that $\infty<\infty+1$, thus contradicting (4.3.1).

The infinity symbols $-\infty$ and ∞ are used in calculus to indicate that the set is unbounded in the negative $(-\infty)$ or positive $(\infty$ or $+\infty)$ direction of the real number line. These symbols are just symbols; they are not real numbers.

Exercise 4.3.3. Let $a \in \mathbb{R}$ and $\epsilon>0$. The following statements hold:
(i) $\forall x \in \mathbb{R} \quad|x-a|<\epsilon \quad \Leftrightarrow \quad a-\epsilon<x<a+\epsilon$.
(ii) $\{x \in \mathbb{R}:|x-a|<\epsilon\}=(a-\epsilon, a+\epsilon)$.

REmARK 4.3.4 (Mnemonic Tool: BBB-principle). The content of Exercise 4.3.3 I call the BBB-principle. The reason for this nickname comes from the local geography. This class takes place in Bellingham, South of Bellingham on I-5 is Burlington and North of Bellingham on I-5 is Blaine. It just happens that both Burlington and Blaine are around 20 miles from Bellingham. In the inequality $|x-a|<\epsilon$, the symbol a stands for Bellingham, ϵ stands for 20 miles, and the inequality is asking: Where is a point x on I- 5 which is at the distance 20 miles from Bellingham? A common sense answer is: That point is between Burlington and Blaine. That is exactly what the inequality $a-\epsilon<x<a+\epsilon$ is saying; it is saying that x is North of Burlington $a-\epsilon$ and South of Blaine $a+\epsilon$. This is just a mnemonic tool to internalize this important equivalence.
4.3.1. Intersections and unions of infinite families of intervals. In this subsection we apply definitions presented in Subsection 3.1.4 to infinite families of intervals. Recall that when I talk about sets whose members are sets, then I use 'family' as a synonym for set. So, 'infinite families of intervals' means 'infinite sets of intervals'.

Exercise 4.3.5. Let $a \in \mathbb{R}$. Prove that

$$
\bigcap\{(a-u, a+u): u>0\}=\{a\}
$$

Solution. (A very detailed solution.) What is the meaning of the expression $\bigcap\{(a-u, a+u): u>0\}$? Here $\{(a-u, a+u): u>0\}$ stands for a family of open intervals. For every $u>0$ we are given an interval $(a-u, a+u)$. This is a set of sets, which we often call a family of sets.

Recall the definition of the intersection of a family of sets \mathcal{A}. The meaning of the expression $\bigcap\{A: A \in \mathcal{A}\}$ is as follows

$$
x \in \bigcap\{A: A \in \mathcal{A}\} \quad \Leftrightarrow \quad \forall A \in \mathcal{A} \quad x \in A
$$

Thus, to prove

$$
\bigcap\{(a-u, a+u): u>0\}=\{a\}
$$

we have to prove the following equivalence

$$
x \in \bigcap\{(a-u, a+u): u>0\} \quad \Leftrightarrow \quad x=a
$$

In other words, we have to prove

$$
\forall u>0 \quad x \in(a-u, a+u) \quad \Leftrightarrow \quad x=a
$$

Let us prove the preceding equivalence in two steps. First we prove \Leftarrow, then we prove \Rightarrow.

Assume that $x=a$. Let $u>0$ be arbitrary. By Axiom OA, adding a to both sides of $0<u$ we get $a<a+u$. Adding $a-u$ to both sides of $0<u$ we get $a-u<a$. Hence $x=a \in(a-u, a+u)$. Since $u>0$ was arbitrary we proved \Leftarrow.

Now we prove \Rightarrow. Assume that

$$
\forall u>0 \quad x \in(a-u, a+u)
$$

Then

$$
\forall u>0 \quad a-u<x \wedge x<a+u
$$

We can rewrite the last quantified statement as two quantified statements

$$
\forall u>0 \quad a-u<x \quad \text { and } \quad \forall u>0 \quad x<a+u
$$

Applying Axiom OA, from the preceding two statements we obtain

$$
\forall u>0 \quad a-x<u \quad \text { and } \quad \forall u>0 \quad x-a<u .
$$

Now recall Exercise 4.1.17,

$$
\forall u>0 \quad \alpha \leq u \quad \Rightarrow \quad \alpha \leq 0
$$

Therefore

$$
\forall u>0 \quad a-x<u \quad \Rightarrow \quad a-x \leq 0
$$

and

$$
\forall u>0 \quad x-a<u \quad \Rightarrow \quad x-a \leq 0
$$

Thus, we have proved $a \leq x$ and $x \leq a$. Consequently, $x=a$. In conclusion, we have proved

$$
\forall u>0 \quad x \in(a-u, a+u) \quad \Rightarrow \quad x=a .
$$

Exercise 4.3.6. Let $a, b \in \mathbb{R}$ and $a<b$. Prove that

$$
\bigcap\{(a, b+u): u>0\}=(a, b] .
$$

Exercise 4.3.7. Let $a, b \in \mathbb{R}$ and $a<b$. Prove that

$$
\bigcap\{(a-u, b+u): u>0\}=[a, b]
$$

Solution. Denote by A the intersection in the equality and assume $x \in A$. Then, by the definition of intersection, $x \in(a-u, b+u)$ for all $u>0$. By the definition of an open interval, $a-u<x$ and $x<b+u$ for all $u>0$. Hence, $a-x<u$ and $x-b<u$ for all $u>0$. By Exercise 4.1.17 we have $a-x \leq 0$ and $x-b \leq 0$, that is, $a \leq x$ and $x \leq b$. By the definition of a closed interval $x \in[a, b]$. This proves $A \subseteq[a, b]$.

Now assume that $x \in[a, b]$. Then, $a-x \leq 0$ and $x-b \leq 0$. Let $u>0$ be arbitrary. By the transitivity of the order in $\mathbb{R}, a-x<u$ and $x-b<u$ for all $u>0$. Hence, $a-u<x$ and $x<b+u$ for all $u>0$. Consequently, $x \in(a-u, b+u)$ for all $u>0$. Therefore, $x \in A$. This proves $[a, b] \subseteq A$.

Since we proved both $A \subseteq[a, b]$ and $[a, b] \subseteq A$, the equality $A=[a, b]$ is proved.

Exercise 4.3.8. Let $a, b \in \mathbb{R}$ and $a<b$. Prove that

$$
\bigcup\{[a+u, b): 0<u<b-a\}=(a, b)
$$

Exercise 4.3.9. Let $a, b \in \mathbb{R}$ and $a<b$. Prove that

$$
\bigcup\left\{[a+u, b-u]: 0<u<\frac{b-a}{2}\right\}=(a, b)
$$

4.3.2. Cardinality of intervals. The goal here is to prove that any two intervals have the same cardinality.

ThEOREM 4.3.10. Let I and J be any two of the nine kinds of intervals defined in Definition 4.3.1. Then there exists a bijection $f: I \rightarrow J$.

We start with three specific bijections in the following two lemmas and a corollary. In the lemmas we use the set of positive integers \mathbb{N} and the set of integers \mathbb{Z} which will be introduced in Chapter 5.

LEmmA 4.3.11. The function $\phi: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geq 0}$, defined by the following piecewise formula, is a bijection:

$$
\forall x \in \mathbb{R}_{>0} \quad \phi(x)= \begin{cases}x & \text { if } \\ x \in \mathbb{R}_{>0} \backslash \mathbb{N} \\ x-1 & \text { if } \\ x \in \mathbb{N}\end{cases}
$$

Proof. The inverse of the function $\phi: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geq 0}$ defined in the lemma is

$$
\forall x \in \mathbb{R}_{\geq 0} \quad \phi^{-1}(x)=\left\{\begin{array}{lll}
x & \text { if } & x \in \mathbb{R}_{>0} \backslash \mathbb{N} \\
x+1 & \text { if } & x \in \mathbb{N} \cup\{0\}
\end{array}\right.
$$

which is a bijection with domain $\mathbb{R}_{\geq 0}$ and range $\mathbb{R}_{>0}$. This claim is proved by straightforward algebra. For visualisations of the function $\phi: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geq 0}$ and its inverse $\phi^{-1}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{>0}$ Figures 13 , 14, Figures 15 , and 16 .

FIG. 15. $\phi: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geq 0}$

FIG. 16. $\phi^{-1}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{>0}$

It is helpful to notice that the sets $\mathbb{R}_{>0}$ and $\mathbb{R}_{\geq 0}$ can be represented as disjoint unions as follows:

$$
\begin{aligned}
& \mathbb{R}_{>0}=\left(\mathbb{R}_{>0} \backslash \mathbb{N}\right) \cup \mathbb{N} \\
& \mathbb{R}_{\geq 0}=\left(\mathbb{R}_{>0} \backslash \mathbb{N}\right) \cup(\mathbb{N} \cup\{0\})
\end{aligned}
$$

The function ϕ on the set $\mathbb{R}_{>0} \backslash \mathbb{N}$, that is

$$
\phi: \mathbb{R}_{>0} \backslash \mathbb{N} \rightarrow \mathbb{R}_{>0} \backslash \mathbb{N}
$$

acts as the identity, so it is a bijection. The function ϕ restricted to the domain \mathbb{N}, that is

$$
\phi: \mathbb{N} \rightarrow\{0\} \cup \mathbb{N}
$$

is also a bijection, so called 'backward shift'.

REMARK 4.3.12. I can not move on to the next lemma without recording another beautiful formula for a bijection with domain $\mathbb{R}_{>0}$ and range $\mathbb{R}_{\geq 0}$, given by the formula:

$$
\forall x \in \mathbb{R}_{>0} \quad x \mapsto 2\lceil x\rceil-1-x,
$$

and its inverse with domain $\mathbb{R}_{\geq 0}$ and range $\mathbb{R}_{>0}$ is given by the formula:

$$
\forall x \in \mathbb{R}_{\geq 0} \quad x \mapsto 2\lfloor x\rfloor+1-x
$$

We will talk about the functions floor, denoted by $\lfloor x\rfloor$, and ceiling, denoted by $\lceil x\rceil$, in Section 6.2. The claim that the above functions are inverses of each other follows from the properties of the floor and ceiling. The beauty of these functions is revealed in their graphs, see Figures 17 and 18.

Lemma 4.3.13. The function $\psi: \mathbb{R} \rightarrow[-1,1]$ defined by the following formula is a bijection:

$$
\forall x \in \mathbb{R} \quad \psi(x)=\frac{\operatorname{sgn}(x)}{\phi(|x|)+1}= \begin{cases}0 & \text { if } x=0 \\ \frac{1}{x+\operatorname{sgn}(x)} & \text { if } x=\mathbb{R} \backslash \mathbb{Z} \\ \frac{1}{x} & \text { if } x \in \mathbb{Z} \backslash\{0\}\end{cases}
$$

Proof. We construct the bijection $\psi: \mathbb{R} \rightarrow[-1,1]$ in two steps. We use the following representations of \mathbb{R} and $[-1,1]$ as disjoint unions:

$$
\begin{aligned}
\mathbb{R} & =\mathbb{R}_{<0} \cup\{0\} \cup \mathbb{R}_{>0} \\
{[-1,1] } & =[-1,0) \cup\{0\} \cup(0,1]
\end{aligned}
$$

Next we construct a bijection with domain $\mathbb{R}_{>0}$ and $(0,1]$. This is done in two steps:

$$
\mathbb{R}_{>0} \xrightarrow{x \mapsto \phi(x)} \mathbb{R}_{\geq 0} \xrightarrow{x \mapsto \frac{1}{x+1}}(0,1]
$$

Fig. 19. The bijection $\psi: \mathbb{R} \rightarrow[-1,1]$

Hence the composition is

$$
\forall x \in \mathbb{R}_{>0} \quad x \mapsto \frac{1}{\phi(x)+1}
$$

which is a bijection with domain $\mathbb{R}_{>0}$ and range $(0,1]$.
Next we construct a bijection with domain $\mathbb{R}_{<0}$ and $[-1,0)$. This is done in two steps:

$$
\mathbb{R}_{<0} \xrightarrow{x \mapsto-\phi(-x)} \mathbb{R}_{\leq 0} \xrightarrow{x \mapsto \frac{1}{x-1}}[-1,0) .
$$

Hence the composition is

$$
\forall x \in \mathbb{R}_{<0} \quad x \mapsto \frac{1}{-\phi(-x)-1}=\frac{-1}{\phi(-x)+1}
$$

which is a bijection with domain $\mathbb{R}_{<0}$ and range $[-1,0)$.
These two formulas can be unified as follows: The function defined as

$$
\forall x \in \mathbb{R} \quad \psi(x)=\frac{\operatorname{sgn}(x)}{\phi(|x|)+1}= \begin{cases}0 & \text { if } \quad x=0 \\ \frac{1}{x+\operatorname{sgn}(x)} & \text { if } \quad x=\mathbb{R} \backslash \mathbb{Z} \\ \frac{1}{x} & \text { if } \quad x \in \mathbb{Z} \backslash\{0\}\end{cases}
$$

is a bijection with domain \mathbb{R} and range $[-1,1]$. Its inverse can be calculated to be

$$
\forall x \in[-1,1] \quad \psi^{-1}(x)=\operatorname{sgn}(x) \phi^{-1}\left(\frac{1}{|x|}-1\right)= \begin{cases}0 & \text { if } x=0 \\ \frac{1}{x}-\operatorname{sgn}(x) & \text { if } x=\mathbb{R} \backslash \mathbb{Z} \\ x & \text { if } \frac{1}{x} \in \mathbb{Z} \backslash\{0\}\end{cases}
$$

which is a bijection with domain $[-1,1]$ and range \mathbb{R}. In the first definition of Φ^{-1} the expression involving ϕ^{-1} is not defined for $x=0$, but, for $x=0$ we have
$\operatorname{sgn}(0)=0$, that is the undefined quantity is multiplied by 0 . In the definition of Φ^{-1}, for simplicity, we adopt a common convention that if an undefined expression is multiplied by 0 , the entire expression assumes the value 0 .

Corollary 4.3.14. The restriction of the bijection ψ from Lemma 4.3.13 to $\mathbb{R}_{\geq 0}$, see Figure 20, is a bijection with domain $\mathbb{R}_{\geq 0}$ and range $[0,1]$. The function $\psi_{r}: \mathbb{R}_{\geq 0} \rightarrow[0,1]$ is defined by the following piecewise formula:

$$
\forall x \in \mathbb{R}_{\geq 0} \quad \psi_{r}(x)= \begin{cases}0 & \text { if } x=0 \\ \frac{1}{x+1} & \text { if } x=\mathbb{R}_{>0} \backslash \mathbb{N}, \\ \frac{1}{x} & \text { if } x \in \mathbb{N} .\end{cases}
$$

Fig. 20. The bijection $\psi_{r}: \mathbb{R}_{\geq 0} \rightarrow[0,1]$

Proof of Theorem 4.3.10. Part I. In this part we consider closed intervals. Let $a, b, c, d \in \mathbb{R}$ be such that $a<b$ and $c<d$. The function

$$
\forall x \in[a, b] \quad x \mapsto \frac{d-c}{b-a}(x-a)+c,
$$

is a bijection with domain $[a, b]$ and range $[c, d]$. Its inverse is

$$
\forall x \in[c, d] \quad x \mapsto \frac{b-a}{d-c}(x-c)+a,
$$

which is a bijection with domain $[c, d]$ and range $[a, b]$. These claims are proved by straightforward algebra.
In this way, we have constructed a bijection between any two closed intervals.
Part II. In this part we consider open intervals. Let $a, b, c, d \in \mathbb{R}$ be such that $a<b$ and $c<d$. There are four kinds of open intervals:
(i) The open interval of its own kind is \mathbb{R}.
(ii) Finite open intervals, like (a, b) and (c, d). The formulas given in Part I, with adjusted domains provide bijections between any two finite open intervals.
(iii) Right-infinite open intervals, like $\mathbb{R}_{>a}$ and $\mathbb{R}_{>c}$. The function

$$
\forall x \in \mathbb{R}_{>a} \quad x \mapsto(x-a)+c,
$$

is a bijection with domain $\mathbb{R}_{>a}$ and range $\mathbb{R}_{>c}$. Its inverse is

$$
\forall x \in \mathbb{R}_{>c} \quad x \mapsto(x-c)+a
$$

which is a bijection with domain $\mathbb{R}_{>c}$ and range $\mathbb{R}_{>a}$. These claims are proved by straightforward algebra.

In this way, we have constructed a bijection between any two rightinfinite open intervals.
(iv) Left-infinite open intervals, like $\mathbb{R}_{<a}$ and $\mathbb{R}_{<c}$. Straightforward modifications of the bijections in (iii) provide bijections between any two leftinfinite open intervals.
Next we provide bijections between selected typical representatives of intervals in each of the kinds presented in (i), (ii), (iii), (iv). The typical representative in (i) is the only one, \mathbb{R}. We select the typical representative in (ii) to be $(-1,1)$, in (iii) to be $\mathbb{R}_{>0}$, and in (iv) to be $\mathbb{R}_{<0}$.

The promised bijections are as follows:
(i)-(ii). A bijection with domain \mathbb{R} and range $(-1,1)$, see Figure 21, is given by

$$
\forall x \in \mathbb{R} \quad x \mapsto \frac{x}{1+|x|}
$$

Its inverse is

Fig. 21. A bijection $\mathbb{R} \rightarrow(-1,1)$

$$
\forall x \in(-1,1) \quad x \mapsto \frac{x}{1-|x|}
$$

which is a bijection with domain $(-1,1)$ and range \mathbb{R}. These claims are proved by straightforward algebra.
(iii)-(ii). A bijection with domain $\mathbb{R}_{>0}$ and range $(-1,1)$, see Figure 22, is given by

$$
\forall x \in \mathbb{R}_{>0} \quad x \mapsto \frac{x-1}{x+1}
$$

Its inverse is

Fig. 22. A bijection $\mathbb{R}_{>0} \rightarrow(-1,1)$

$$
\forall x \in(-1,1) \quad x \mapsto \frac{1+x}{1-x}
$$

which is a bijection with domain $(-1,1)$ and range $\mathbb{R}_{>0}$. These claims are proved by straightforward algebra.
(iii)-(iv). A bijection with domain $\mathbb{R}_{>0}$ and range $\mathbb{R}_{<0}$ is given by

$$
\forall x \in \mathbb{R}_{>0} \quad x \mapsto-x
$$

Its inverse is

$$
\forall x \in \mathbb{R}_{<0} \quad x \mapsto-x,
$$

which is a bijection with domain $\mathbb{R}_{<0}$ and range $\mathbb{R}_{>0}$. These claims are proved by straightforward algebra.

Forming compositions of bijections presented in Part II, we can construct a bijection between any two open intervals.

Part III. In this part we consider half-open intervals. Let $a, b, c, d \in \mathbb{R}$ be such that $a<b$ and $c<d$. There are four kinds of half-open intervals:
(a) Finite, left-open intervals, like $(a, b]$ and $(c, d]$. The formulas given in Part I, with adjusted domains, provide bijections between these intervals.
(b) Finite, right-open intervals, like $[a, b)$ and $[c, d)$. The formulas given in Part I, with adjusted domains, provide bijections between these intervals.
(c) Right-infinite half-open intervals, like $\mathbb{R}_{\geq a}$ and $\mathbb{R}_{\geq c}$. The formulas given in Part II item (iii), with adjusted domains, provide bijections between these intervals.
(d) Left-infinite half-open intervals, like $\mathbb{R}_{\leq a}$ and $\mathbb{R}_{\leq c}$. The formulas given in Part II item (iv), with adjusted domains, provide bijections between these intervals.
Next we provide bijections between selected typical representatives of intervals in each of the kinds presented in (a), (b), (c), (d). We select a typical representative in (a) to be $(-1,1]$, in (b) to be $[-1,1)$, in (c) to be $\mathbb{R}_{\geq 0}$, and in (d) is $\mathbb{R}_{\leq 0}$.

The promised bijections are as follows:
(a)-(b). A bijection with domain $(-1,1]$ and range $[-1,1)$ is given by the formula provided in Part II item (iii)-(iv), with adjusted domains, of this proof.
(c)-(b). A bijection with domain $\mathbb{R}_{\geq 0}$ and range $[-1,1)$ is given by the formula provided in Part II item (iii)-(ii), with adjusted domains, of this proof.
(c)-(d). A bijection between with domain $\mathbb{R}_{\geq 0}$ and range $\mathbb{R}_{\leq 0}$ is given by the formula in Part II item (iii)-(iv), with adjusted domains, of this proof.

Forming compositions of bijections presented in Part III, we can construct a bijection between any two half-open intervals.

Conclusion. Let I and J be arbitrary intervals. If I and J are both closed, then a bijection between them is given in Part I. If I and J are both open, then a bijection between them is given in Part II. If I and J are both half-open, then a bijection between them is given in Part III.

If I is open and J is closed, then Part II provides a bijection

$$
g: I \rightarrow \mathbb{R}
$$

and Part I provides a bijection

$$
h:[-1,1] \rightarrow J
$$

With the bijection $\psi: \mathbb{R} \rightarrow[-1,1]$ from Lemma 4.3.13, consider the composition

$$
I \xrightarrow{g} \mathbb{R} \xrightarrow{\psi}[-1,1] \xrightarrow{h} J
$$

By Theorem 3.2.16, the above composition, that is the function

$$
f=h \circ \psi \circ g: I \rightarrow J,
$$

is a desired bijection.
If I is open and J is half-open, then Part II provides a bijection

$$
g: I \rightarrow \mathbb{R}_{>0}
$$

and Part III provides a bijection

$$
h: \mathbb{R}_{\geq 0} \rightarrow J
$$

With the bijection $\phi: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geq 0}$ from Lemma 4.3.11, consider the composition

$$
I \xrightarrow{g} \mathbb{R}_{>0} \xrightarrow{\phi} \mathbb{R}_{\geq 0} \xrightarrow{h} J .
$$

By Theorem 3.2.16, the above composition, that is the function

$$
f=h \circ \phi \circ g: I \rightarrow J,
$$

is a desired bijection.
If I is half-open and J is closed, then Part III provides a bijection

$$
g: I \rightarrow \mathbb{R}_{\geq 0}
$$

and Part I provides a bijection

$$
h:[0,1] \rightarrow J
$$

With the bijection $\psi_{r}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ from Corollary 4.3.14, consider the composition

$$
I \xrightarrow{g} \mathbb{R}_{\geq 0} \xrightarrow{\psi_{r}}[0,1] \xrightarrow{h} J .
$$

By Theorem 3.2.16, the above composition, that is the function

$$
f=h \circ \psi_{r} \circ g: I \rightarrow J
$$

is a desired bijection.
For any combination of kinds of intervals I and J we constructed a bijection with domain I and range J. Thus, the theorem is proved.

REmARK 4.3.15. In this remark, I present two bijections that I considered for the proof of Theorem 4.3.10, but they were not needed in the end.

A specific bijection with domain \mathbb{R} and range $\mathbb{R}_{>0}$ in Part II of the proof of Theorem 4.3.10 is the following function, see Figure 23:

$$
\forall x \in \mathbb{R} \quad x \mapsto \frac{1+\operatorname{rlu}(x)}{1+\operatorname{rlu}(-x)}=\left\{\begin{array}{lll}
\frac{1}{1-x} & \text { if } & x \in \mathbb{R}_{<0} \\
1+x & \text { if } & x \in \mathbb{R}_{\geq 0}
\end{array}\right.
$$

with domain \mathbb{R} and range $\mathbb{R}_{>0}$. Its inverse is

$$
\forall x \in \mathbb{R}_{>0} \quad x \mapsto \frac{1-x}{\operatorname{llu}(1-x)-1}=\left\{\begin{array}{lll}
1-\frac{1}{x} & \text { if } & x \in(0,1] \\
x-1 & \text { if } & x \in \mathbb{R}_{>1}
\end{array}\right.
$$

which is a bijection with domain $\mathbb{R}_{>0}$ and range \mathbb{R}. It is desirable to avoid using piecewise formulas. The only way I found to express the above two functions without using piecewise formulas was by using Rectified Linear Unit, or ReLU, function, denoted here as rlu.

Fig. 23. A bijection $\mathbb{R} \rightarrow \mathbb{R}_{>0}$

Fig. 24. A bijection $\mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$

The composition of the preceding bijection $\mathbb{R} \rightarrow \mathbb{R}_{>0}$ and the bijection $\phi: \mathbb{R}_{>0} \rightarrow$ $\mathbb{R}_{\geq 0}$ from Lemma 4.3.11, that is the function

$$
\mathbb{R} \xrightarrow{x \mapsto \frac{1+\operatorname{rlu}(x)}{1+\operatorname{rlu}(-x)}} \mathbb{R}_{>0} \xrightarrow{x \mapsto \phi(x)} \mathbb{R}_{\geq 0}
$$

is the following function, see Figure 24:

$$
\forall x \in \mathbb{R} \quad x \mapsto=\phi\left(\frac{1+\operatorname{rlu}(x)}{1+\operatorname{rlu}(-x)}\right)=\left\{\begin{array}{cll}
\frac{1}{1-x} & \text { if } & x \in \mathbb{R}_{<0} \\
x & \text { if } & x \in\{0\} \cup \mathbb{N} \\
1+x & \text { if } & x \in \mathbb{R}_{>0} \backslash \mathbb{N}
\end{array}\right.
$$

4.4. Bounded sets, minimum and maximum

Definition 4.4.1. Let A be a nonempty subset of \mathbb{R}. If there exists $b \in \mathbb{R}$ such that

$$
\begin{equation*}
x \leq b \quad \text { for all } x \in A \tag{4.4.1}
\end{equation*}
$$

then A is said to be bounded above. A number b satisfying (4.4.1) is called an upper bound of A.

Similarly we define:
Definition 4.4.2. Let A be a nonempty subset of \mathbb{R}. If there exists $a \in \mathbb{R}$ such that

$$
\begin{equation*}
a \leq x \quad \text { for all } \quad x \in A \tag{4.4.2}
\end{equation*}
$$

then A is said to be bounded below. A number a satisfying (4.4.2) is called a lower bound of A.

Definition 4.4.3. A nonempty subset of \mathbb{R} which is both bounded above and bounded below is said to be bounded.

Exercise 4.4.4. Let A be a nonempty subset of \mathbb{R}. Prove that A is bounded if and only if there exists $K>0$ such that $-K \leq x \leq K$ for all $x \in A$.

Exercise 4.4.5. Let A be a nonempty subset of \mathbb{R}. Prove that A is bounded if and only if there exist $a, b \in \mathbb{R}$, such that $a<b$ and $A \subseteq[a, b]$.

ExERCISE 4.4.6. Prove that $\left\{x \in \mathbb{R}: x^{2}<2\right\}$ is a bounded set.
Exercise 4.4.7. Let A and B be bounded above subsets of \mathbb{R}. Prove that $A \cup B$ is bounded above.

Next we introduce the definitions of the minimum and the maximum.

Definition 4.4.8. Let A be a nonempty subset of \mathbb{R}. A number $a \in \mathbb{R}$ is a minimum of A if it has the following two properties:
(i) For all $x \in A$ we have $a \leq x$,
(ii) $a \in A$.

The minimum of A (if it exists) is denoted by $\min (A)$.
Definition 4.4.9. Let A be a nonempty subset of \mathbb{R}. A number $b \in \mathbb{R}$ is a maximum of A if it has the following two properties:
(i) For all $x \in A$ we have $x \leq b$,
(ii) $b \in A$.

The maximum of A (if it exists) is denoted by $\max (A)$.
Remark 4.4.10. What does it mean for a nonempty subset of \mathbb{R} not to have a minimum? To answer this question we first restate Definition 4.4.8 as follows. A nonempty set A has a minimum if

$$
\begin{equation*}
\exists a \in A \quad \text { such that } \quad \forall x \in A \quad \text { we have } \quad x \geq a \text {. } \tag{4.4.3}
\end{equation*}
$$

Next we formulate the negation of the statement (4.4.3):

$$
\begin{equation*}
\forall a \in A \quad \exists x \in A \quad \text { such that } \quad x<a \tag{4.4.4}
\end{equation*}
$$

Notice that the number x in (4.4.4) depends on a. Sometimes it is useful to emphasize this dependence by writing $x(a)$. A more precise version of the negation is:

$$
\forall a \in A \quad \exists x(a) \in A \quad \text { such that } \quad x(a)<a
$$

ExErcise 4.4.11. Prove that the set of all positive real numbers does not have a minimum.

ExErcise 4.4.12. Give examples of subsets of \mathbb{R} such that:
(a) A set has neither a minimum nor a maximum.
(b) A set has a minimum but not a maximum.
(c) A set has a minimum and a maximum.

CHAPTER 5

The subsets \mathbb{N}, \mathbb{Z} and \mathbb{Q} of \mathbb{R}

5.1. The set \mathbb{N}

We mentioned natural numbers and integers informally in the course of our discussion of the fundamental properties of \mathbb{R}. Notice again that the only numbers that are specifically mentioned in Axioms 1 through 15 are 0 and 1. But, in Section 4.1.2 Exercise 4.1 .10 we proved that there are other numbers in \mathbb{R}, and we defined the numbers $2,3,4,5,6,7,8$ and 9 . The reason that we stopped at 9 is the fact that the number $9+1$ plays a special role in our culture. We could continue this process further, but it would not lead to a rigorous definition of the set of natural numbers. Therefore we chose a different route

Consider the following two properties of a subset S of \mathbb{R} :

$$
\begin{align*}
& 1 \in S \tag{5.1.1}\\
& n \in S \Rightarrow n+1 \in S \tag{5.1.2}
\end{align*}
$$

There are many subsets of \mathbb{R} that have these two properties. For example, one such set is the set of positive real numbers, that is the open infinite interval,

$$
(0,+\infty)
$$

Another such set is the closed infinite interval

$$
[1,+\infty)
$$

and also the union

$$
\{1\} \cup[2,+\infty)
$$

There are many such sets. Next we form the family of all subsets of \mathbb{R} with the properties (5.1.1) and (5.1.2):

$$
\mathcal{N}:=\{S \subseteq \mathbb{R}: 1 \in S \text { and } n \in S \Rightarrow n+1 \in S\}
$$

Intuitively, the set of natural numbers is the smallest set in \mathcal{N}.
Definition 5.1.1. We define \mathbb{N} to be the intersection of the family \mathcal{N} :

$$
\mathbb{N}:=\bigcap\{S: S \in \mathcal{N}\} .
$$

That is, $k \in \mathbb{N}$ if and only if $k \in S$ for all $S \in \mathcal{N}$. The elements of the set \mathbb{N} are called natural numbers or positive integers.

With this definition and Axioms 1 through 15 we should be able to prove all familiar properties of natural numbers.

Theorem 5.1.2. The following five statements hold:
(N 1) $1 \in \mathbb{N}$.
(N 2) The formula $\sigma(n)=n+1$ defines a function $\sigma: \mathbb{N} \rightarrow \mathbb{N}$.
(N 3) If $\sigma(m)=\sigma(n)$, then $n=m$; that is σ, is an injection.
(N 4) For all $n \in \mathbb{N}, \quad \sigma(n) \neq 1$.
(N 5) If $K \subseteq \mathbb{N}$ has the following two properties

$$
1 \in K
$$

$$
\forall n \in \mathbb{N} \quad n \in K \quad \Rightarrow \quad n+1 \in K
$$

then $K=\mathbb{N}$.
Proof. Since $1 \in S$ for all $S \in \mathcal{N}$, we have $1 \in \mathbb{N}$. This proves (N 1). To prove (N 2), let $n \in \mathbb{N}$ be arbitrary. Then $n \in S$ for all $S \in \mathcal{N}$. Since (5.1.2) holds for each $S \in \mathcal{N}$, we conclude that $n+1 \in S$ for all $S \in \mathcal{N}$. Hence $n+1 \in \mathbb{N}$ for all $n \in \mathbb{N}$. Property (N 3) follows from Theorem 4.1.2 (i). To prove (N 5) assume that $K \subseteq \mathbb{N}$ and K has properties (5.1.1) and (5.1.2). Then $K \in \mathcal{N}$. Consequently, $\mathbb{N}=\bigcap\{S: S \in \mathcal{N}\} \subseteq K$. Thus, $K=\mathbb{N}$.

Remark 5.1.3. The five properties of \mathbb{N} proved in Theorem 5.1.2 are known as Peano's axioms. Italian mathematician Giuseppe Peano (1858-1932) used these five properties for an axiomatic foundation of natural numbers. All other familiar properties of the positive integers can be proved using these axioms. The theory of natural numbers developed from Peano's axioms is called Peano's arithmetic.

An important consequence of the property (N5) in Theorem 5.1.2 is the Principle of Mathematical Induction. It is stated and proved in the next theorem. This principle is the main tool in dealing with statements involving natural numbers.

Theorem 5.1.4. Let $P(n), n \in \mathbb{N}$, be a family of statements such that
(I) $P(1)$ is true,
(II) For all $n \in \mathbb{N}, P(n)$ implies $P(n+1)$.

Then the statement $P(n)$ is true for each $n \in \mathbb{N}$.
Proof. Consider the set

$$
S=\{n \in \mathbb{N}: P(n) \text { is true }\}
$$

By (I), $1 \in S$. By (II), for all $n \in \mathbb{N}$, if $n \in S$, then $n+1 \in S$. Hence, S has both properties from Theorem 5.1.2 (N 5). Consequently, $S=\mathbb{N}$. This means that for all $n \in \mathbb{N}$ the statement $P(n)$ is true.

REmARK 5.1.5. The step (II) of the mathematical induction requires you to reach the conclusion that $P(n+1)$ is true by using the assumption that $P(n)$ is true, i.e., you have to prove the implication $P(n) \Rightarrow P(n+1)$ for all $n \in \mathbb{N}$.

The following theorem can be proved using the properties from Theorem 5.1.2 and the principle of mathematical induction.

Theorem 5.1.6. The following statements hold:
(i) $1=\min \mathbb{N}$; that is, $1 \in \mathbb{N}$ and $1 \leq n$ for all $n \in \mathbb{N}$.
(ii) For every $n \in \mathbb{N} \backslash\{1\}$, we have $n-1 \in \mathbb{N}$.
(iii) For all $m, n \in \mathbb{N}$, we have $m+n \in \mathbb{N}$.
(iv) For all $m, n \in \mathbb{N}$ we have $m n \in \mathbb{N}$.
(v) For all $m, n \in \mathbb{N}$ such that $m<n$, we have $n-m \in \mathbb{N}$.
(vi) If $m, n \in \mathbb{N}$ and $m<n$, then $m+1 \leq n$.

Proof. (i) As we mentioned before the closed infinite interval $[1,+\infty)$ belongs to the family \mathcal{N}. Therefore $\mathbb{N} \subseteq[1,+\infty)$. Thus $n \geq 1$ for all $n \in \mathbb{N}$. Since $1 \in \mathbb{N}$ was proved in Theorem 5.1.2, (i) is proved.
(ii) Consider the following set $S=\{1\} \cup\{m \in \mathbb{N}: m-1 \in \mathbb{N}\}$. Clearly $S \subseteq \mathbb{N}$ and $1 \in S$. Notice also that $2 \in S$, since $2-1=1 \in \mathbb{N}$. Next we will prove

$$
\begin{equation*}
n \in S \quad \Rightarrow \quad n+1 \in S \tag{5.1.3}
\end{equation*}
$$

Assume $n \in S$. We distinguish two cases: $n=1$ and $n \in\{m \in \mathbb{N}: m-1 \in \mathbb{N}\}$. If $n=1$, then $n+1=2 \in S$. Hence (5.1.3) holds in this case. If $n \in\{m \in \mathbb{N}$: $m-1 \in \mathbb{N}\}$, then $n \in \mathbb{N}$ and $n-1 \in \mathbb{N}$. By Theorem 5.1.2 (N 2), $n+1 \in \mathbb{N}$ and, obviously, $(n+1)-1=n \in \mathbb{N}$. Therefore $n+1 \in\{m \in \mathbb{N}: m-1 \in \mathbb{N}\}$. Hence $n+1 \in S$. Thus (5.1.3) holds. Now, by Theorem 5.1.2 (N 5), $S=\mathbb{N}$. This proves $\mathbb{N} \backslash\{1\}=\{m \in \mathbb{N}: m-1 \in \mathbb{N}\}$.

Remaining properties are proved similarly.

The Principle of Mathematical Induction is also used to define functions on \mathbb{N}. The process described in the next proposition is called the Principle of Inductive Definition.

Proposition 5.1.7. If a function f has the following two properties
(I) $f(1)$ is defined,
(II) $\forall n \in \mathbb{N} \quad f(n+1)$ is defined in terms of $f(1), \ldots, f(n)$,
then f is defined on \mathbb{N}.
Proof. Denote the domain of f by D. Let $k \in \mathbb{N}$ and set the statement $P(k)$ to be: $\{1, \ldots, k\} \subset D$. Clearly $P(1)$ is true by (I). Now, let $n \in \mathbb{N}$ be arbitrary and assume that $P(n)$ is true. That is assume that $\{1, \ldots, n\} \subset D$. By (II) $f(n+1)$ is defined in terms of $f(1), \ldots, f(n)$. Since by the inductive hypothesis all $f(1), \ldots, f(n)$ are defined, we conclude that $f(n+1)$ is defined. Thus $n+1 \in D$. Since we assume that $\{1, \ldots, n\} \subset D$, we have proved that $\{1, \ldots, n, n+1\} \subset D$. Hence $P(n+1)$ is proved. By the Principle of Mathematical induction $P(n)$ is true for all $n \in \mathbb{N}$. Therefore $\{1, \ldots, n\} \subset D$ for all $n \in \mathbb{N}$. Consequently, $n \in D$ for all $n \in \mathbb{N}$.

A definition of a function with properties (I) and (II) in Proposition 5.1.7 is called recursive or inductive definition.

Definition 5.1.8. A function whose domain is \mathbb{N} and whose codomain is \mathbb{R} is called a sequence in \mathbb{R}.

Remark 5.1.9. Traditionally, if $f: A \rightarrow B$ is a function and if $x \in A$, then the value of f at x is denoted by $f(x)$. In addition to this traditional notation, for a sequence $f: \mathbb{N} \rightarrow \mathbb{R}$ we will often write f_{n} instead of $f(n), n \in \mathbb{N}$. When convenient we will use both notations for the same sequence. The reason for this is purely typographical. For example if $n=\frac{m(m+1)}{2}+1$, then it is awkward to write $f_{\frac{m(m+1)}{2}+1}$. In such a case, the expression $f\left(\frac{m(m+1)}{2}+1\right)$ is preferable since it is easier to read and understand.

5.2. Examples and exercises related to \mathbb{N}

The following two examples deal with two familiar functions: the factorial and the power function. Let $n \in \mathbb{N}$. The factorial is informally "defined" as

$$
n!=1 \cdot 2 \cdot \ldots \cdot(n-1) \cdot n
$$

Let $a \in \mathbb{R}$. The n-th power of a is informally expressed as

$$
a^{n}=\underbrace{a \cdot a \cdot \ldots \cdot a \cdot a}_{n \text { times }} .
$$

Next we give the rigorous definitions of the factorial and the power function as examples of recursive definitions.

Example 5.2.1. The function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by
(i) $f(1)=1$,
(ii) $\forall n \in \mathbb{N} \quad f(n+1)=(n+1) f(n)$,
is called the factorial.
The standard notation for the factorial is $f(n)=n!$. The definition of factorial is extended to 0 by setting $0!=1$.

Example 5.2.2. Let $a \in \mathbb{R}$. Define the function $g: \mathbb{N} \rightarrow \mathbb{R}$ by
(i) $g(1)=a$,
(ii) $\forall n \in \mathbb{N} \quad g(n+1)=a g(n)$.

The standard notation for the function g is $g(n)=a^{n}$. The expression a^{n} is called the n-th power of a. For $a \neq 0$, the definition of the power is extended to 0 by setting $a^{0}=1$. The expression 0^{0} is not defined.

Exercise 5.2.3. Let $a, b \in \mathbb{R}$ be such that $a, b \geq 0$. Let $n \in \mathbb{N}$. Prove that $a<b$ if and only if $a^{n}<b^{n}$.

Solution.

Use the Principle of Mathematical Induction to do the following exercises.
Exercise 5.2.4. Consider the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by
(i) $f(1)=1$,
(ii) $\forall n \in \mathbb{N} \quad f(n+1)=f(n)+(2 n+1)$.

Evaluate the values $f(2), f(3), f(4), f(5)$. Based on the numbers that you get, guess a simple formula for $f(n)$ and prove it.

Exercise 5.2.5. Consider the function $T: \mathbb{N} \rightarrow \mathbb{N}$ defined by
(i) $T(1)=1$,
(ii) $\forall n \in \mathbb{N} \quad T(n+1)=T(n)+(n+1)$.

Evaluate the values $T(2), T(3), T(4), T(5), T(6)$. Based on these numbers guess a simple formula for $T(n)$ in terms of n and prove it.

REmARK 5.2.6. The numbers $T(n)$, with $n \in \mathbb{N}$, are called the triangular numbers. For $n \in \mathbb{N}$, the triangular number

$$
T(n)=1+2+\cdots+(n-1)+n
$$

is the additive analog of the factorial (see Example 5.2.1)

$$
n!=1 \cdot 2 \cdot \cdots \cdot(n-1) \cdot n
$$

For completeness we set $T(0)=0$.

Exercise 5.2.7. Let $a, x \in \mathbb{R}$. Consider the function $g: \mathbb{N} \rightarrow \mathbb{R}$ defined by
(i) $g(1)=a$,
(ii) $\forall n \in \mathbb{N} \quad g(n+1)=g(n)+a x^{n}$.

Another way of writing $g(n)$ is

$$
g(n)=\sum_{k=0}^{n-1} a x^{k}
$$

Informally this sum is sometimes written as

$$
g(n)=a+a x+\cdots+a x^{n-1}
$$

This sum is called the myhlgeometric sum.
Prove that

$$
g(n)= \begin{cases}a \frac{1-x^{n}}{1-x} & \text { if } x \neq 1 \\ n a & \text { if } x=1\end{cases}
$$

Exercise 5.2.8 (Bernoulli's inequality). For all $n \in \mathbb{N}$ and all $x>-1$ we have

$$
(1+x)^{n} \geq 1+n x
$$

ExErcise 5.2.9. For all $n \in \mathbb{N}$ and all $x \in[0,1]$ we have

$$
(1+x)^{n} \leq 1+\left(2^{n}-1\right) x .
$$

ExERCISE 5.2.10 (Binomial theorem). For all $n \in \mathbb{N}$ and all $x, y \in \mathbb{R}$ we have

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

Here $\binom{n}{k}$ denotes the binomial coefficient which is defined by

$$
\binom{n}{k}:=\frac{n!}{k!(n-k)!} \quad \text { where } \quad n \in \mathbb{N}, \quad k \in\{0,1, \ldots, n\} .
$$

The most important property of binomial coefficients is given by the following equality: For all $n \in \mathbb{N}$ and all $k \in\{0,1, \ldots, n\}$ we have

$$
\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}
$$

This formula is proved by using the definition of the binomial coefficients and the rules for adding fractions.

Exercise 5.2.11. (a) Prove that for all $n \in \mathbb{N}$ we have

$$
\sum_{k=1}^{n} \frac{1}{k^{2}} \leq 2-\frac{1}{n}
$$

(b) Prove that the set

$$
A=\left\{\sum_{k=1}^{n} \frac{1}{k^{2}}: n \in \mathbb{N}\right\}
$$

is bounded.
(c) Does A have a minimum? Does A have a maximum?

5.3. Finite sets and infinite sets

One of the most important applications of the natural numbers is counting. The following special subsets of \mathbb{N} are used for counting

$$
\llbracket 1, n \rrbracket_{\mathbb{N}}:=\{k \in \mathbb{N}: k \leq n\}, \quad n \in \mathbb{N}
$$

For $n \in \mathbb{N}$, this set is called n-element counting set
This leads to a concept of a finite set.
Since this notation will be used often in this section, we will, for simplicity of notation drop the subscript \mathbb{N} in $\llbracket 1, n \rrbracket_{\mathbb{N}}$ and simply write $\llbracket 1, n \rrbracket$. For example

$$
\begin{aligned}
& \llbracket 1,1 \rrbracket=\{1\} \\
& \llbracket 1,2 \rrbracket=\{1,2\} \\
& \llbracket 1,3 \rrbracket=\{1,2,3\} \\
& \llbracket 1,4 \rrbracket=\{1,2,3,4\} \\
& \llbracket 1,5 \rrbracket=\{1,2,3,4,5\} \\
& \llbracket 1,6 \rrbracket=\{1,2,3,4,5,6\}
\end{aligned}
$$

Next we give a formal mathematical definition of the counting process.
Definition 5.3.1. A nonempty set A is finite if there exists $n \in \mathbb{N}$ and a bijection $\phi: \llbracket 1, n \rrbracket \rightarrow A$ with domain $\llbracket 1, n \rrbracket$ and range A. In this case we say that A has n elements and write $\operatorname{card}(A)=n$.

Exercise 5.3.2. If A is finite and $b \notin A$, then $A \cup\{b\}$ is finite and $\operatorname{card}(A \cup\{b\})=$ $1+\operatorname{card}(A)$.

ExERCISE 5.3.3. A nonempty set A is finite if and only if there exists $n \in \mathbb{N}$ and a surjection $f: \llbracket 1, n \rrbracket \rightarrow A$. In this case $\operatorname{card}(A) \leq n$. Hint: One direction here is trivial. The other direction is a statement involving a natural number n : If $f: \llbracket 1, n \rrbracket \rightarrow A$ is a surjection, then A is finite and $\operatorname{card}(A) \leq n$. This can be proved by mathematical induction. The statement is true for $n=1$. Assume that it is true for n and $f: \llbracket 1, n+1 \rrbracket \rightarrow A$ is a surjection. Set $B=f(\llbracket 1, n \rrbracket) \subseteq A$. Then by the inductive hypothesis B is finite and $\operatorname{card}(B) \leq n$. There are two cases $B=A$ and $B \subsetneq A$. If $B=A$, then, by the inductive hypothesis, A finite and $\operatorname{card}(A) \leq n \leq n+1$. If $B \subsetneq A$, then $A=B \cup\{f(n+1)\}$. By Exercise 5.3.2 A is finite and $\operatorname{card}(A)=1+\operatorname{card}(B) \leq n+1$.

Finite sets are often informally written as $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. However, this way of writing does not imply that the mapping $k \mapsto a_{k}, k \in \llbracket 1, n \rrbracket$, is a bijection, but it does imply that this mapping is a surjection.

Exercise 5.3.4. A nonempty subset B of a finite set A is finite and we have $\operatorname{card}(B) \leq \operatorname{card}(A)$. Hint: Let $f: \llbracket 1, n \rrbracket \rightarrow A$ be a bijection. Since B is not empty there exists $b \in B$. Define the function $g: A \rightarrow B$ by $g(x)=\left\{\begin{array}{ll}x & \text { if } x \in B \\ b & \text { if } x \in A \backslash B\end{array}\right.$. Clearly the range of g is B. Therefore $g \circ f: \llbracket 1, n \rrbracket \rightarrow B$ is a surjection. By Exercise 5.3.3, B is finite.

Exercise 5.3.5. Let B is a nonempty proper subset of a finite set A. Then B is finite and $\operatorname{card}(B)<\operatorname{card}(A)$. Hint: Let $c \in A \backslash B$. Then

$$
\operatorname{card}(B) \leq \operatorname{card}(A \backslash\{c\})=\operatorname{card}(A)-1<\operatorname{card}(A)
$$

ExErcise 5.3.6. If A is a finite subset of \mathbb{R}, then A has a minimum and a maximum.

Definition 5.3.7. A nonempty set which is not finite is said to be infinite.
REMARK 5.3.8. The previous definition of an infinite set is certainly logically correct, but it is not 'constructive'.

Therefore it is desirable to give a formal negation of the definition of finite set. Before doing that I will restate the definition of a finite set as:
"A set A is finite if (and only if) there exists $n \in \mathbb{N}$ and there exists a bijection $f: \llbracket 1, n \rrbracket \rightarrow A . "$

The negation of the last statement (and thus a characterization of an infinite set) is the following
"For every $n \in \mathbb{N}$ and for every $f: \llbracket 1, n \rrbracket \rightarrow A$ we have that f is not a bijection."
Remark 5.3.9. The importance of Exercise 5.3 .6 is twofold. First, it states the most important property of finite sets of real numbers. Second, its contrapositive provides a simple way of proving that a set is infinite: If a nonempty subset of \mathbb{R} does not have a minimum or it does not have a maximum, then it is infinite.

The fact that infinite sets might not have a minimum and/or maximum makes dealing with such sets more difficult. The following proposition states that not having a minimum and/or maximum is to some extend a universal property of an infinite subset of \mathbb{R}.

Theorem 5.3.10. Let $S \subseteq \mathbb{R}$. If S is infinite, then there exists a nonempty subset A of S such that A does not have a minimum or there exists a nonempty subset B of S such that B does not have a maximum.

Proof. We will prove the equivalent implication: If S is an infinite subset of \mathbb{R} and each nonempty subset of S has a minimum, then there exist a nonempty subset B of S such that B does not have a maximum.

So, assume that S is an infinite subset of \mathbb{R} and each nonempty subset of S has a minimum. Then, in particular, $\min (S)$ exists. Let W be the set of all minimums of infinite subsets of S. Formally,

$$
W=\{x \in S: x=\min (E) \text { where } E \subseteq S \text { and } E \text { is infinite }\}
$$

Clearly $\min (S)$ is an element in W. Hence $W \neq \emptyset$.
Next we will prove that W does not have a maximum. Let $y \in W$ be arbitrary. Then there exists an infinite subset F of S such that $y=\min (F)$. Since F is infinite, the set $F \backslash\{y\}$ is also infinite. Since $F \backslash\{y\} \subset S$, by the assumption $z=\min (F \backslash\{y\})$ exists. Therefore, $z \in W$. Since $z \in F \backslash\{y\}$, we have $z \neq y$. Since $z \in F$ and $y=\min (F)$, we have $z \geq y$. Hence $z>y$. Thus, for each $y \in W$ there exists $z \in W$ such that $z>y$. This proves that W is a nonempty subset of S which does not have a maximum.

REMARK 5.3.11. The above theorem is an implication of the form:

$$
p \Rightarrow q \vee r .
$$

The displayed implication is equivalent to the implication

$$
p \wedge(\neg q) \Rightarrow r
$$

One way to see this is to consider the negations of both displayed implications. The negation of $p \Rightarrow q \vee r$ is $p \wedge(\neg q) \wedge(\neg r)$. The negation of $p \wedge(\neg q) \Rightarrow r$ is is $p \wedge(\neg q) \wedge(\neg r)$. Since the negations are clearly equivalent, the implications are also equivalent.

Exercise 5.3.12. Prove that \mathbb{N} does not have a maximum.
ExErcise 5.3.13. Prove that a nonempty subset of \mathbb{N} is finite if and only if it has a maximum.

Exercise 5.3.14. Prove that the set \mathbb{N} is infinite.
Theorem 5.3.15 (Well Ordering Axiom). If A is a nonempty subset of \mathbb{N}, then A has a minimum.

Remark 5.3.16. Subsets of \mathbb{N} can be infinite. As I mentioned in Remark 5.3.9, a problem with infinite sets is a possible absence of minimum and maximum. Theorem 5.3.15 tells us that a subset of natural numbers must at least have a minimum. Consequently, infinite subsets of \mathbb{N} are not as bad as infinite subsets of \mathbb{R}.

Proof of Theorem 5.3.15. This proof uses the following two facts:
(i) Each finite set has a minimum. (Proved in Exercise 5.3.6.)
(ii) For each $n \in \mathbb{N}$ each subset of the set $\{1,2, \ldots, n\}=\llbracket 1, n \rrbracket$ is finite. (Proved in Exercise 5.3.4.)
Since $A \neq \emptyset$, there exists $n \in A$. Consider the set $B=\{x \in A: x \leq n\}$. Then $B \subseteq \llbracket 1, n \rrbracket$. By fact (ii) B is finite. Now, by fact (i) B has a minimum; denote it by $m=\min B$. Then m is also the minimum of A. (Here is a proof: If $a \in A$, then either $a \leq n$, or $n<a$. In the first case $a \in B$, and therefore $m \leq a$. If $n<a$, then $m \leq n<a$, and therefore $m \leq a$ for each $a \in A$.)

5.4. Countable sets

Our intuition, gained from everyday life, has been helpful for understanding the mathematical aspects of finite sets. In fact, many statements proved in the preceding section were intuitively clear and almost did not require proofs. We proved them to emphasize our focus on rigor.

However, as we proceed with our studies beyond finite sets, our intuition from everyday life becomes less reliable, and we need to build a mathematical intuition for infinite sets.

One of the goals of this section is to understand that the set of natural numbers, \mathbb{N}, is the smallest infinite set.

Definition 5.4.1. A nonempty set A is countable if there exists a bijection $\phi: \mathbb{N} \rightarrow A$.

The following three theorems provide powerful tools for proving that a particular set is countable, especially when constructing a specific bijection between the set and \mathbb{N} is challenging.

Theorem 5.4.2. If S is an infinite subset of \mathbb{N}, then S is countable. That is, there exists a bijection with domain \mathbb{N} and range S.

Proof. Let S be an infinite subset of \mathbb{N}. Let $s \in S$ be arbitrary. Then the set $S \cap \llbracket 1, s \rrbracket$ is finite, since it is a nonempty subset of the finite set $\llbracket 1, s \rrbracket$. Define the function $f: S \rightarrow \mathbb{N}$ by setting

$$
\forall s \in S \quad \phi(s):=\operatorname{card}(S \cap \llbracket 1, s \rrbracket)
$$

The function $\phi: S \rightarrow \mathbb{N}$ has the following three properties:
(I) If $s, t \in S$ and $s<t$, then $\phi(s)<\phi(t)$.
(II) If $s=\min S$, then $\phi(s)=1$.
(III) If $s \in S$ and $t=\min (S \backslash \llbracket 1, s \rrbracket)$, then $\phi(t)=\phi(s)+1$.

Property (I) follows from Exercise 5.3.5. Property (II) follows from the fact that, $s=\min (S)$ implies $S \cap \llbracket 1, s \rrbracket=\{s\}$. Property (III) follows from Exercise 5.3.2.

Property (I) implies that ϕ is an injection. Properties (II) and (III) imply that the range of ϕ, call it K, has the following properties: $1 \in K$ and $n \in K \Rightarrow n+1 \in K$. Since $K \subseteq \mathbb{N}$, this, by Theorem 5.1.2 (N 5), implies $K=\mathbb{N}$. Thus ϕ is a surjection. Hence, $\phi: S \rightarrow \mathbb{N}$ is a bijection. Its inverse $\phi^{-1}: \mathbb{N} \rightarrow S$ is the desired bijection.

Remark 5.4.3. Let A be an infinite set. Recall that by Definition 3.3.4, we have $\operatorname{card}(A) \leq \operatorname{card}(\mathbb{N})$ if there exists a subset $S \subseteq \mathbb{N}$ and a bijection $g: A \rightarrow S$. Since A is infinite and $g: A \rightarrow S$ is a bijection, S is also infinite. By Theorem 5.4.2, S is countable. Given that $g: A \rightarrow S$ is a bijection, A is countable as well. Hence, the cardinality of a countable set represents the smallest infinite cardinality.

Theorem 5.4.4. If A is an infinite set and $f: A \rightarrow \mathbb{N}$ is an injection, then A is countable. That is, there exists a bijection with domain \mathbb{N} and range A.

Proof. Assume that A is an infinite set and $f: A \rightarrow \mathbb{N}$ is an injection. Denote by $S \subseteq \mathbb{N}$ the range of $f: A \rightarrow \mathbb{N}$. Since f is injective, the function $f: A \rightarrow S$ is a bijection. Since A is infinite and there is a bijection between A and S, the set S is infinite as well.

By Theorem 5.4.2, there exists a bijection $\phi: S \rightarrow \mathbb{N}$. Now, consider the composition $\psi=\phi \circ f$. Since $f: A \rightarrow S$ is a bijection and $\phi: S \rightarrow \mathbb{N}$ is a bijection, their composition $\psi: A \rightarrow \mathbb{N}$ is also a bijection, by Theorem 3.2.16. Therefore, $\psi^{-1}: \mathbb{N} \rightarrow A$ is the desired bijection with domain \mathbb{N} and range A, proving that A is countable.

TheOrem 5.4.5. If A is an infinite set and $g: \mathbb{N} \rightarrow A$ is a surjection, then A is countable. That is, there exists a bijection with domain \mathbb{N} and range A.

Proof. Assume that A is an infinite set and $g: \mathbb{N} \rightarrow A$ is a surjection. Since g is a surjection, for every $a \in A$, the set $\{k \in \mathbb{N}: g(k)=a\}$ is nonempty. By Theorem 5.3.15, this set has a minimum. Define the function $h: A \rightarrow \mathbb{N}$ by

$$
\forall a \in A \quad h(a)=\min \{k \in \mathbb{N}: g(k)=a\}
$$

Let us show that h is injective. Suppose, for some $a, b \in A$,

$$
h(a)=h(b)=l \in \mathbb{N}
$$

By definition of $h(a)$ we have $g(l)=a$ and by definition of $h(b)$ we have $g(l)=b$. Since $g: \mathbb{N} \rightarrow A$ is a function (unival), we have $a=b$, thus $h: A \rightarrow \mathbb{N}$ is an injection. By Theorem 5.4.4, A is countable, that is a bijection with domain \mathbb{N} and range A.

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	\ldots
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	\ldots
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	\ldots
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	\ldots
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots
	TABLE 1.				
	$\mathbb{N} \times \mathbb{N}$				

It will be proved in Section 5.5 that the set of integers and the set of rational numbers are countable sets.

The following exercise deals with the Cartesian square of the set \mathbb{N}; that is the set $\mathbb{N} \times \mathbb{N}$. Recall that this is the set of all ordered pairs of positive integers:

$$
\mathbb{N} \times \mathbb{N}:=\{(s, t): s, t \in \mathbb{N}\}
$$

A part of the set $\mathbb{N} \times \mathbb{N}$ is presented in Table 1.
Exercise 5.4.6. Prove that the Cartesian product $\mathbb{N} \times \mathbb{N}$ is countable. (This exercise requires a hint.)

Exercise 5.4.7. Let \mathcal{A} be countable family of sets. Assume that each set in \mathcal{A} is countable. Prove that $\bigcup\{A: A \in \mathcal{A}\}$ is also countable.

Recall that by Definition 3.2.3 $\{0,1\}^{\mathbb{N}}$ denotes all the functions with domain \mathbb{N} and range $\{0,1\}$. That is, $\{0,1\}^{\mathbb{N}}$ is the set of all sequences defined on \mathbb{N}.

Theorem 5.4.8. The set $\{0,1\}^{\mathbb{N}}$ is not countable.
Proof. To prove the claim we will take an arbitrary function $\Phi: \mathbb{N} \rightarrow\{0,1\}^{\mathbb{N}}$ and prove that Φ is not a surjection. This will be proved by constructing a specific element $f \in\{0,1\}^{\mathbb{N}}$, that is $f: \mathbb{N} \rightarrow\{0,1\}$, such that $f \neq \Phi_{n}$ for all $n \in \mathbb{N}$. To construct f let us analyze $\Phi_{n}, n \in \mathbb{N}$. Clearly $\Phi_{1}: \mathbb{N} \rightarrow\{0,1\}$, that is $\Phi_{1}(n) \in\{0,1\}$ for all $n \in \mathbb{N}$. We can indicate the action of Φ_{1} on \mathbb{N} by listing its first 7 values:

$$
\Phi_{1}(1) \quad \Phi_{1}(2) \quad \Phi_{1}(3) \quad \Phi_{1}(4) \quad \Phi_{1}(5) \quad \Phi_{1}(6) \quad \Phi_{1}(7) \quad \ldots
$$

We can do the same for $\Phi_{2}, \Phi_{3}, \Phi_{4}, \Phi_{5}, \Phi_{6}, \ldots$ to get the infinite table in Table 2 . The reason why the diagonal elements $\Phi_{n}(n), n \in \mathbb{N}$, in Table 2 are boxed will be clear shortly.

Our goal is to define $f: \mathbb{N} \rightarrow\{0,1\}$ which will differ from Φ_{n} for each $n \in \mathbb{N}$. The easiest way to achieve this is to define $f(n)$ to have a different value from $\Phi_{n}(n)$, the boxed value in Table 2. Thus we define:

$$
\forall n \in \mathbb{N} \quad f(n)=1-\Phi_{n}(n)
$$

For all $n \in \mathbb{N}$ we have $\Phi_{n}(n) \in\{0,1\}$. Therefore $f(n)=1-\Phi_{n}(n) \in\{0,1\}$ and for all $n \in \mathbb{N}$ we have $f(n) \neq \Phi_{n}(n)$. Let $n \in \mathbb{N}$. Since $f(n) \neq \Phi_{n}(n)$, we have that $f \neq \Phi_{n}$. Since $n \in \mathbb{N}$ was arbitrary,

$$
\forall n \in \mathbb{N} \quad f \neq \Phi_{n}
$$

$\Phi_{1}(1)$	$\Phi_{1}(2)$	$\Phi_{1}(3)$	$\Phi_{1}(4)$	$\Phi_{1}(5)$	$\Phi_{1}(6)$	$\Phi_{1}(7)$	\ldots
$\Phi_{2}(1)$	$\Phi_{2}(2)$	$\Phi_{2}(3)$	$\Phi_{2}(4)$	$\Phi_{2}(5)$	$\Phi_{2}(6)$	$\Phi_{2}(7)$	\ldots
$\Phi_{3}(1)$	$\Phi_{3}(2)$	$\Phi_{3}(3)$	$\Phi_{3}(4)$	$\Phi_{3}(5)$	$\Phi_{3}(6)$	$\Phi_{3}(7)$	\ldots
$\Phi_{4}(1)$	$\Phi_{4}(2)$	$\Phi_{4}(3)$	$\Phi_{4}(4)$	$\Phi_{4}(5)$	$\Phi_{4}(6)$	$\Phi_{4}(7)$	\ldots
$\Phi_{5}(1)$	$\Phi_{5}(2)$	$\Phi_{5}(3)$	$\Phi_{5}(4)$	$\Phi_{5}(5)$	$\Phi_{5}(6)$	$\Phi_{5}(7)$	\ldots
$\Phi_{6}(1)$	$\Phi_{6}(2)$	$\Phi_{6}(3)$	$\Phi_{6}(4)$	$\Phi_{6}(5)$	$\boxed{\Phi_{6}(6)}$	$\Phi_{6}(7)$	\ldots
$\Phi_{7}(1)$	$\Phi_{7}(2)$	$\Phi_{7}(3)$	$\Phi_{7}(4)$	$\Phi_{7}(5)$	$\Phi_{7}(6)$	$\boxed{\Phi_{7}(7)}$	\ldots
\vdots	\ddots						

Table 2. Cantor's diagonal argument
Hence $\Phi: \mathbb{N} \rightarrow\{0,1\}^{\mathbb{N}}$ is not a surjection. Since $\Phi: \mathbb{N} \rightarrow\{0,1\}^{\mathbb{N}}$ was arbitrary function, we conclude that there does not exist a bijection between \mathbb{N} and $\{0,1\}^{\mathbb{N}}$.

EXERCISE 5.4.9. Show that the set of polynomials with rational coefficients is countable.

Exercise 5.4.10. Show that the set of all prime numbers is countable.
5.4.1. An explicit bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N}. We conclude this section by establishing an explicit formula for a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N}. A natural way to proceed to find this bijection is to rearrange Table 1 in a triangular shape and label the ordered pairs in $\mathbb{N} \times \mathbb{N}$ by elements of \mathbb{N} placed in a circle next to the corresponding ordered pair. As a result we get Table 3.

First, notice that in each column in Table 3 the sum of the elements of the ordered pairs is constant. Second, notice that the label at the bottom of each column is a triangular number, see Exercise 5.2.5. The label for the pair of the form $(s, 1)$ is the triangular number $(s)(s+1) / 2$. The labels for the pairs in the same column are obtained by subtracting the value of $t-1$. Thus the bijection $A: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is given by

$$
A(s, t)=\frac{(s+t-1)(s+t)}{2}-t+1, \quad s, t \in \mathbb{N}
$$

The easiest way to show that A is a bijection is to find its inverse $B: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$. We want to figure out which pair is associated with the label $n \in \mathbb{N}$. Looking at Table 3 we see that for the label, say 19, the first component of the corresponding pair $(4,3)$ is the distance of 19 to the previous triangular number 15 and the second component is the distance of 19 to the next triangular number 21 plus 1 . So, to construct B we need to need to figure out a way of capturing each positive integer n between consecutive triangular numbers. That is, for each $n \in \mathbb{N}$ we need to find m such that

$$
\begin{equation*}
\frac{(m-1) m}{2}+1 \leq n \leq \frac{m(m+1)}{2} \tag{5.4.1}
\end{equation*}
$$

Table 3. Labeled $\mathbb{N} \times \mathbb{N}$
or, equivalently, in the notation of Exercise 5.2.5,

$$
\begin{equation*}
T_{m-1}<n \leq T_{m} \tag{5.4.2}
\end{equation*}
$$

Such m is uniquely determined by n and we set $m=R_{n}$. It follows from (5.4.2) that

$$
R_{n}=\min \left\{k \in \mathbb{N}: n \leq T_{k}\right\}, \quad n \in \mathbb{N}
$$

Clearly $n(n+1) \geq 2 n$ for all $n \in \mathbb{N}$. Therefore, $T_{n} \geq n$ for all $n \in \mathbb{N}$. Consequently the set in the definition of R_{n} is not empty. By Theorem 5.3.15 every nonempty subset of \mathbb{N} has a minimum, so R_{n} is well defined.

The following table illustrates the relationship between the sequences $\left\{T_{n}\right\}$ and $\left\{R_{n}\right\}$. The triangular numbers are in bold face.

T_{1}		T_{2}		T_{3}			T_{4}				T_{5}					T_{6}						
n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
R_{n}	1	2	2	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	6	6	7

REmark 5.4.11. There are several other formulas for the sequence R. For example for $n \in \mathbb{N}$,

$$
R_{n}=\left\lfloor\frac{1}{2}+\sqrt{2 n}\right\rfloor \quad \text { or } \quad R_{n}=\left\lceil-\frac{1}{2}+\sqrt{2 n}\right\rceil .
$$

Here $\lfloor\cdot\rfloor$ is the floor function, $\lceil\cdot\rceil$ is the ceiling function and $\sqrt{\cdot}$ is the square root function. These functions will be introduced in Section 6.2.

An alternative way to define the sequence R is the following recursive definition.
(i) $R_{1}=1$,
(ii) $\forall n \in \mathbb{N} \quad R_{n+1}=1+R_{\left(n+1-R_{n}\right)}$.

With the sequence $\left\{R_{n}\right\}$ at our disposal we can define $B: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$:

$$
B(n)=(\underbrace{n-\frac{\left(R_{n}-1\right) R_{n}}{2}}_{\begin{array}{c}
\text { distance to the preced- } \\
\text { ing triangular number }
\end{array}}, \underbrace{\frac{R_{n}\left(R_{n}+1\right)}{2}-n}_{\begin{array}{c}
\text { distannee tothe follow- } \\
\text { ing triangular number }
\end{array}}+1), \quad n \in \mathbb{N} .
$$

Exercise 5.4.12. Prove that

$$
B(A(s, t))=(s, t) \quad \text { and } \quad A(B(n))=n, \quad \text { for all } \quad s, t, n \in \mathbb{N} .
$$

Hint: Notice that by Exercise 5.2 .5 the formulas for A and B can be written as

$$
\begin{aligned}
A(s, t) & =T_{(s+t-1)}-t+1, \quad s, t \in \mathbb{N}, \\
B(n) & =\left(n-T_{R_{n}-1},-n+1+T_{R_{n}}\right), \quad n \in \mathbb{N} .
\end{aligned}
$$

Let $s, t \in \mathbb{N}$. To evaluate $B(A(s, t))$ you will need to evaluate $R_{A(s, t)}$ first. The following straightforward inequalities

$$
T_{(s+t-2)}=T_{(s+t-1)}-(s+t-1)<A(s, t)=T_{(s+t-1)}-t+1 \leq T_{(s+t-1)}
$$

imply that $R_{A(s, t)}=s+t-1$. With this identity calculating $B(A(s, t))$ is just a careful application of definitions and algebra. Calculating $A(B(n))$ is also just an application of definitions and algebra. In this calculation use $T_{k}-T_{k-1}=k$. This is the end of Hint.
5.4.2. The Quadruplicity of Sets. In this subsection, we summarize the classification of sets established in this chapter. The fundamental dichotomy of sets divides all sets into two categories: the empty set and nonempty sets. This division leads to a trichotomy when we further classify nonempty sets into finite and infinite sets:
$>$ The empty set.
$>$ Finite sets.
$>$ Infinite sets.
The classification extends by partitioning the infinite sets further into countable and uncountable sets. This results in the following quadruplicity:

```
 The empty set.
 Finite sets.
 Countable sets.
 Uncountable sets.
```

I would like to point out that this quadruplicity is not universally accepted. I value it for its clarity. However, when consulting other resources, it is crucial to verify the specific terminology used. For instance, many textbooks classify the empty set as finite, a classification I find confusing. The essence of a finite set lies in the existence of a bijection, and I am uncomfortable considering functions whose domain or codomain is the empty set. Additionally, many sources categorize finite sets as countable, distinguishing between finite countable sets and infinite countable sets. I find this distinction cumbersome. Therefore, I advocate for the quadruplicity outlined above due to its clarity.

5.5. The sets \mathbb{Z} and \mathbb{Q}

We define an integer to be a real number x such that either $x=0$ or x is a natural number or $-x$ is a natural number. The set of all integers is denoted by \mathbb{Z}. Hence

$$
\mathbb{Z}=\{x \in \mathbb{R}: \quad x \in \mathbb{N} \quad \text { or } \quad x=0 \quad \text { or } \quad-x \in \mathbb{N}\}
$$

Exercise 5.5.1. Prove that \mathbb{Z} is countable.
Solution. One bijection is the function $f: \mathbb{Z} \rightarrow \mathbb{N}$ defined by

$$
\forall z \in \mathbb{Z} \quad f(z)=2|z|+\operatorname{us}(z)=2\left|z+\frac{1}{4}\right|+\frac{1}{2}
$$

Here, one needs to prove that $f(z) \in \mathbb{N}$ for all $z \in \mathbb{Z}$. The inverse of f is the function $g: \mathbb{N} \rightarrow \mathbb{Z}$ defined by

$$
\forall n \in \mathbb{N} \quad g(n)=\frac{(-1)^{n+1}}{4}(2 n-1)-\frac{1}{4}
$$

Here, one needs to prove that $g(n) \in \mathbb{Z}$ for all $n \in \mathbb{N}$ and

$$
\forall n \in \mathbb{N} \quad f(g(n))=n \quad \text { and } \quad \forall z \in \mathbb{Z} \quad g(f(z))=z
$$

Exercise 5.5.2. Prove that $\mathbb{Z} \times \mathbb{N}$ is countable.
Now we define a rational number to be a real number of the form $m \cdot \frac{1}{n}$ where $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. (We write shortly m / n or $\frac{m}{n}$ instead of $m \cdot \frac{1}{n}$.) The set of all rational numbers we denote by \mathbb{Q}, that is

$$
\mathbb{Q}=\left\{x \in \mathbb{R}: \exists m \in \mathbb{Z} \text { and } \exists n \in \mathbb{N} \text { such that } x=\frac{m}{n}\right\}
$$

Exercise 5.5.3. Denote by \mathbb{Q}_{+}the set of all positive rational numbers. Prove that \mathbb{Q}_{+}is countable.

Exercise 5.5.4. Prove that there exists a bijection between \mathbb{Q}_{+}and \mathbb{Q}.
Exercise 5.5 .5 . Prove that the set \mathbb{Q} is countable.
ExErcise 5.5.6. Prove that $r^{2} \neq 2$ for all $r \in \mathbb{Q}$.
Solution. In this proof we will use the concepts of even and odd integers. We will use the fact that the square of an even integer is even and the square of an odd integer is odd. We will also use the fact that the sets of even and odd integers are disjoint.

We will first prove that for each $r \in \mathbb{Q}$ there exist $p \in \mathbb{Z}$ and $q \in \mathbb{N}$ which are not both even such that $r=p / q$. Let $r \in \mathbb{Q}$ be arbitrary. Set

$$
S=\left\{n \in \mathbb{N}: \exists m \in \mathbb{Z} \text { such that } r=\frac{m}{n}\right\}
$$

Since $r \in \mathbb{Q}$ the set S is not empty. Since S is a nonempty subset of \mathbb{N}, by the Well Ordering Axiom (Theorem 5.3.15), S has a minimum. Set $q=\min S$. Since $q \in S$, there exists $p \in \mathbb{Z}$ such that $r=p / q$. Next we will prove that p and q are not both even. That is we will prove the following implication: If $q=\min S, p \in \mathbb{Z}$, and $r=p / q$, then p and q are not both even.

It is easier to prove a partial contrapositive of the last implication. If $n \in S$, $m \in \mathbb{Z}, r=m / n$ and both m and n are even, then n is not a minimum of S. So,
assume $n \in S, m \in \mathbb{Z}$ are both even and $r=m / n$. Then there exist $k \in \mathbb{Z}$ and $j \in \mathbb{N}$ such that $m=2 k$ and $n=2 j$. Clearly $j<n$. Also,

$$
r=\frac{m}{n}=\frac{2 k}{2 j}=\frac{k}{j} .
$$

Hence $j \in S$ and therefore n is not a minimum of S.
Let $r=p / q$ where p and q are not both even. Consider two cases: Case 1: p is odd, and Case 2: p is even.
Case 1. Assume that p is odd. By the background knowledge, p^{2} is odd. Since $2 q^{2}$ is even and p^{2} is odd, we have $p^{2} \neq 2 q^{2}$.
Case 2. Assume that p is even. Then there exists an integer k such that $p=2 k$. Since not both q and p are even, q must be odd. Then q^{2} is odd as well. Since $2 k^{2}$ is even we have $2 k^{2} \neq q^{2}$. Consequently $4 k^{2} \neq 2 q^{2}$. Since $4 k^{2}=(2 k)^{2}=p^{2}$, it follows that $p^{2} \neq 2 q^{2}$. Thus, $r^{2} \neq 2$.

In Exercise 5.5.6 we proved that there is no rational number r such that $r^{2}=2$. Since the set \mathbb{Q} of rational numbers satisfies all Axioms 1 through 15, we cannot expect that based only on Axioms 1 through 15 we can prove that there exists a real number α such that $\alpha^{2}=2$. This is a proof an additional axiom is needed for the set of real numbers; an axiom that will not be satisfied by the set of rational numbers. This is the Completeness Axiom.
There are additional properties of $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R} that we cannot prove without the Completeness Axiom. For example:
$>$ The set \mathbb{N} is not bounded.
$>$ For every $a, b \in \mathbb{R}$ such that $a<b$ there exists $r \in \mathbb{Q}$ such that $a<r<b$.
$>$ The set \mathbb{Q} is a proper subset of \mathbb{R}.
$>$ The function $x \mapsto x^{2}$ with domain and codomain $\mathbb{R}_{\geq 0}$ is a bijection.
$>$ The set \mathbb{R} is not countable.

CHAPTER 6

The Completeness Axiom

6.1. The Completeness Axiom

Recall Exercise 4.1.11: If a and b are real numbers such that $a<b$, then there exists a real number c such that $a<c<b$.

This statement assures that there are no big holes in \mathbb{R}; between any two real numbers there is another real number. A natural question to ask is whether the same is true for sets. If we are given two sets which are in some sense separated, does there exists a real number between them? Somewhat surprisingly this has to be postulated as the last axiom of the real numbers:

Axiom 16 (CA: Completeness Axiom). If A and B are nonempty subsets of \mathbb{R} such that for all $a \in A$ and for all $b \in B$ we have $a \leq b$, then there exists $c \in \mathbb{R}$ such that for all $a \in A$ and for all $b \in B$ we have $a \leq c \leq b$.

Visually this corresponds to the picture:

However, the reader should realize that the pictured setting with A being the orange points and B being the blue points is very special. The set A could have been represented by a dust cloud of orange points, while the set B could have been represented by a dust cloud of blue points, the only requirement being that all the blue points are to the right of all the orange points.

Since we perceive the real number line to have no holes, the place marked by the open circle must correspond to a real number c.

Now we have 16 axioms of \mathbb{R}. It is remarkable that all statements about real numbers that are studied in beginning mathematical analysis courses can be deduced from these sixteen axioms and basic properties of sets.

The formulation of the Completeness Axiom given as Axiom 16 above is not standard. This formulation I found in the book Mathematical analysis by Vladimir Zorich, published by Springer in 2004. The standard formulation of the Completeness Axiom is given in Exercise 6.3.3 below. In that exercise you will prove that Zorich's Completeness Axiom is equivalent to the standard one.

Now we have a powerful tool. Let us use it to prove some important statements. We start with the proof that \mathbb{N} is not bounded.

Theorem 6.1.1 (Archimedean Property). For every $b \in \mathbb{R}$ there exists $n \in \mathbb{N}$ such that $n>b$.

Proof. We will prove the statement by contradiction. Assume that the negation of the statement is true. That is, assume that there exists $\beta \in \mathbb{R}$ such that
$\beta \geq n$ for all $n \in \mathbb{N}$. Set

$$
A=\mathbb{N} \quad \text { and } \quad B=\{b \in \mathbb{R}: b \geq n \quad \forall n \in \mathbb{N}\}
$$

Since $1 \in \mathbb{N}$ and $\beta \in B$, the sets A and B are nonempty subsets of \mathbb{R}. By the definition of the set B we have $a \leq b$ for all $a \in A$ and all $b \in B$. By Completeness Axiom there exists $c \in \mathbb{R}$ such that $a \leq c \leq b$ for all $a \in A$ and all $b \in B$. In other words, $n \leq c \leq b$ for all $n \in \mathbb{N}$ and all $b \in B$. Since $c \leq b$ for all $b \in B$, we conclude that $c-1 / 2 \notin B$. Thus, there exists $m \in \mathbb{N}$ such that $c-1 / 2<m$. Since $n \leq c$ for all $n \in \mathbb{N}$ we conclude that $m+1 \leq c$. Hence,

$$
c-1 / 2<m<m+1 \leq c
$$

Using the above inequalities we get

$$
1=(m+1)-m<c-(c-1 / 2)=1 / 2
$$

that is $2<1$. Wrong! (by Exercise 4.1.10) This proves the statement.
Exercise 6.1.2. Prove that there exists a unique positive real number α such that $\alpha^{2}=2$.

Solution. Step 1. Set

$$
A=\left\{x \in \mathbb{R}: x>0 \text { and } x^{2}<2\right\}, \quad B=\left\{y \in \mathbb{R}: y>0 \text { and } y^{2}>2\right\}
$$

Since $1 \in A$ and $2 \in B, A$ and B are nonempty subsets of \mathbb{R}. By Exercise 4.1.13, $x<y$ for all $x \in A$ and all $y \in B$. The Completeness Axiom implies that there exists $c \in \mathbb{R}$ such that $x \leq c \leq y$ for all $x \in A$ and all $y \in B$. Since $1 \in A$ we have that $1 \leq c$. In particular, $c>0$.

Step 2. Next we will prove that A does not have a maximum. We need to prove that

$$
\forall x \in A \quad \exists \epsilon>0 \quad \text { such that } \quad x+\epsilon \in A
$$

Let $x \in A$ be arbitrary. I will explain how I discovered $\epsilon>0$ in the remark below. Here I will just state: Set

$$
\epsilon=\frac{2-x^{2}}{5}
$$

Since $x \in A$ we have $x>0$ and $2-x^{2}>0$. Therefore

$$
0<\epsilon=\frac{2-x^{2}}{5}<\frac{2}{5}<1
$$

Since $x>0$ and $\epsilon>0$ we have $x+\epsilon>0$. Now explore the quantity $(x+\epsilon)^{2}$:

$$
\begin{aligned}
(x+\epsilon)^{2} & =x^{2}+2 x \epsilon+\epsilon^{2} \\
\text { since } \epsilon<1 & <x^{2}+2 x \epsilon+\epsilon \\
\text { since } x<2 & <x^{2}+4 \epsilon+\epsilon \\
\text { Axiom DL and } 4+1=5 & =x^{2}+5 \epsilon \\
\text { since } \epsilon=\left(2-x^{2}\right) / 5 & =x^{2}+5 \frac{2-x^{2}}{5} \\
\text { since } 5(1 / 5)=1 & =x^{2}+2-x^{2} \\
& =2 .
\end{aligned}
$$

Thus, $x+\epsilon \in A$. Since $x<x+\epsilon$, and $x \in A$ was arbitrary, we proved that A does not have a maximum.

Step 3. Next we will prove that B does not have a minimum. We need to prove that

$$
\forall y \in B \quad \exists \epsilon>0 \quad \text { such that } \quad y-\epsilon \in B
$$

Let $y \in B$ be arbitrary. I will explain how I discovered $\epsilon>0$ on the class website. Here I will just state: Set

$$
\epsilon=\frac{y^{2}-2}{2 y}
$$

Since $y \in B$ we have $y>0$ and $y^{2}-2>0$. Therefore

$$
0<\epsilon=\frac{y^{2}-2}{2 y} \quad \text { and } \quad y-\epsilon=y-\frac{y^{2}-2}{2 y}=\frac{y^{2}+2}{2 y}>0 .
$$

Now we explore the quantity $(y-\epsilon)^{2}$:

$$
\begin{aligned}
(y-\epsilon)^{2} & =y^{2}-2 y \epsilon+\epsilon^{2} \\
\text { since } \epsilon^{2}>0 & >y^{2}-2 y \epsilon \\
\text { use } \epsilon=\left(y^{2}-2\right) /(2 y) & =y^{2}-2 y \frac{y^{2}-2}{2 y} \\
(2 y)(1 /(2 y))=1 & =y^{2}-\left(y^{2}-2\right) \\
& =2 .
\end{aligned}
$$

Thus, $y-\epsilon \in B$. Since $y>y-\epsilon$, and $y \in B$ was arbitrary, we proved that B does not have a minimum.

Step 4. In Step 1 we proved that there exists $c \in \mathbb{R}$ such that $c>0$ and for all $x \in A$ we have $x \leq c$. Thus, c is an upper bound for A. Since A does not have a maximum, $c \in A$ is not possible. Thus, $c^{2}<2$ is not true. Therefore, $c^{2} \geq 2$ holds. Similarly, in Step 1 we proved that there exists $c \in \mathbb{R}$ such that $c>0$ and for all $y \in B$ we have $y \geq c$. Thus, c is a lower bound for B. Since B does not have a minimum, $c \in B$ is not possible. Thus, $c^{2}>2$ is not true. Therefore, $c^{2} \leq 2$ holds. Hence, we proved

$$
c^{2} \geq 2 \quad \text { and } \quad c^{2} \leq 2
$$

Consequently, $c^{2}=2$.
REmARK 6.1.3 (A narration about Step 2 in the preceding solution). How did I discover the ϵ in Step 2 of the preceding solution? I made several observations. I need a small number $\epsilon>0$. How small? I do not know, but I can certainly target choosing $\epsilon \in(0,1)$, that is, I can aim to choose $\epsilon<1$. Why is this important? It is important because, with $\epsilon \in(0,1)$, I can simplify algebraic expressions that I encounter by replacing ϵ^{2} with the larger number ϵ. What is the main guiding inequality for ϵ ? It is $(x+\epsilon)^{2}<2$. Can I solve the last inequality for $\epsilon \in(0,1)$? And always have in mind that you do not need all the solutions, just one. And, since the whole exercise is about the existence of the square root of two, I can not take the square root of both sides. Let's expand the inequality:

$$
x^{2}+2 x \epsilon+\epsilon^{2}<2
$$

This is a quadratic inequality in ϵ, so it is hard to solve directly. But I need just one solution, which does not need to be the best possible. So, can I replace the quadratic expression with a larger linear one:

$$
x^{2}+2 x \epsilon+\epsilon^{2}<x^{2}+2 x \epsilon+\epsilon<2
$$

If I find a solution for the linear inequality, then I have a solution for the quadratic one. Smiley face emoji! But, while we are at making things larger, why not take into account that $x \in A$, so $x^{2}<2$, so $x^{2}<2^{2}$, so $x<2$. Thus,

$$
x^{2}+2 x \epsilon+\epsilon^{2}<x^{2}+2 x \epsilon+\epsilon \leq x^{2}+4 \epsilon+\epsilon=x^{2}+5 \epsilon \leq 2
$$

and the last inequality is truly simple to solve (just one solution is what we need):

$$
\epsilon=\frac{2-x^{2}}{5}
$$

Now that we have ϵ, our narration above becomes irrelevant. Sad face emoji! Just show that this ϵ works the magic that we need, as I did in the solution above.

Exercise 6.1.4. Prove that \mathbb{Q} is a proper subset of \mathbb{R}.
Theorem 6.1.5 (The Nested Intervals Theorem). For every $k \in \mathbb{N}$ let $I_{k} \subset \mathbb{R}$ be a finite closed interval. If for every $k \in \mathbb{N}$ we have $I_{k+1} \subseteq I_{k}$, then there exists $c \in \mathbb{R}$ such that $c \in I_{k}$ for all $k \in \mathbb{N}$.

Proof. By the definition of a finite closed interval, for every $k \in \mathbb{N}$ there exist $a_{k}, b_{k} \in \mathbb{R}$ such that $a_{k}<b_{k}$ and $I_{k}=\left[a_{k}, b_{k}\right]$. Assume that for all $k \in \mathbb{N}$ we have $I_{k+1} \subseteq I_{k}$. Then, for all $k \in \mathbb{N}$ we have $a_{k+1}, b_{k+1} \in\left[a_{k}, b_{k}\right]$, and consequently

$$
\begin{equation*}
a_{k} \leq a_{k+1}<b_{k+1} \leq b_{k} \tag{6.1.1}
\end{equation*}
$$

Next we will prove that for all $k, m \in \mathbb{N}$ such that $k<m$ we have

$$
\begin{equation*}
a_{k} \leq a_{m}<b_{m} \leq b_{k} \tag{6.1.2}
\end{equation*}
$$

Let $k \in \mathbb{N}$ be arbitrary and write $m \in \mathbb{N}$ such that $k<m$ as $m=k+l$ with $l \in \mathbb{N}$. We will prove that for all $l \in \mathbb{N}$ we have

$$
\begin{equation*}
a_{k} \leq a_{k+l}<b_{k+l} \leq b_{k} \tag{6.1.3}
\end{equation*}
$$

Denote the statement in (6.1.3) by $P(l)$ and prove it by Mathematical Induction. The statement $P(1)$ is proved earlier, see (6.1.1). Let $l \in \mathbb{N}$ be arbitrary and assume that $P(l)$ is true, that is assume (6.1.3). Applying (6.1.1) with k replaced by $k+l$ yields

$$
\begin{equation*}
a_{k+l} \leq a_{k+l+1}<b_{k+l+1} \leq b_{k+l} \tag{6.1.4}
\end{equation*}
$$

Now (6.1.3) and (6.1.4) and Axiom OT yield

$$
a_{k} \leq a_{k+l+1}<b_{k+l+1} \leq b_{k}
$$

Thus, $P(l+1)$ holds. This proves (6.1.2) for all $k, m \in \mathbb{N}$ such that $k<m$.
It follows from (6.1.2) that we have

$$
\begin{equation*}
\forall m \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad a_{m}<b_{n} \tag{6.1.5}
\end{equation*}
$$

Set

$$
A=\left\{a_{m}: m \in \mathbb{N}\right\} \quad \text { and } \quad B=\left\{b_{n}: n \in \mathbb{N}\right\}
$$

Clearly A and B are nonempty subsets of \mathbb{R} and (6.1.5) shows that we can apply the Completeness Axiom to the sets A and B. By the Completeness Axiom we deduce that there exists $c \in \mathbb{R}$ such that

$$
\forall m \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad a_{m} \leq c \leq b_{n}
$$

In particular

$$
\forall n \in \mathbb{N} \quad a_{n} \leq c \leq b_{n}
$$

Thus $c \in\left[a_{n}, b_{n}\right]=I_{n}$ for all $n \in \mathbb{N}$.

The inequalities proved in the following lemma are illustrated in Figure 1 on the right.

Lemma 6.1.6. Let $u, v \in \mathbb{R}$ be such that $u<v$. Then
$u<\frac{2}{3} u+\frac{1}{3} v<\frac{1}{2} u+\frac{1}{2} v<\frac{1}{3} u+\frac{2}{3} v<v$.
Proof. Assume $u<v$. Since $2>0$, Axiom OM yields $2 u<2 v$, and Axioms OA, and DL imply $6 u<$ $4 u+2 v$. Axioms OA, and DL and $u<v$ imply $4 u+2 v<3 u+3 v$. Axioms OA, and DL and $u<v$ also imply $3 u+3 v<2 u+4 v$. Finally, $2 u<2 v$, and Axioms OA, and DL imply $2 u+4 v<6 v$. Now, Axiom OT yields
$6 u<4 u+2 v<3 u+3 v<2 u+4 v<6 v$. Since $1 / 6>0$, Axioms OM and DL yield the desired inequalities.

FIG. 1. $u<\frac{2}{3} u+\frac{1}{3} v<\frac{1}{2} u+\frac{1}{2} v<\frac{1}{3} u+\frac{2}{3} v<v$

Theorem 6.1.7. Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a function. For every interval $I \subseteq \mathbb{R}$ there exists $c \in I$ such that c is not in the range of f. In particular, f is not a surjection.

Proof. Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be an arbitrary sequence of real numbers. Let I be an arbitrary interval.

We recursively define a sequence of nested closed intervals $I_{k}=\left[a_{k}, b_{k}\right]$ where $k \in \mathbb{N}, a_{k}, b_{k} \in\left[a_{0}, b_{0}\right]$ and $a_{k}<b_{k}$. This sequence of intervals will be defined so that it has a special relation to the sequence $f: \mathbb{N} \rightarrow \mathbb{R}$:

$$
\begin{equation*}
\forall k \in \mathbb{N} \quad f_{k} \notin\left[a_{k}, b_{k}\right] . \tag{6.1.6}
\end{equation*}
$$

Base step: For $k=0$, let $a_{0}, b_{0} \in I$ be such that $a_{0}<b_{0}$. Then, $\left[a_{0}, b_{0}\right] \subseteq I$.
Recursive step: For each $k \in \mathbb{N}$ consider two cases based on the placement of f_{k} relative to the midpoint of the preceding interval $\left[a_{k-1}, b_{k-1}\right]$:

$$
f_{k} \leq \frac{1}{2}\left(a_{k-1}+b_{k-1}\right) \quad \text { or } \quad f_{k}>\frac{1}{2}\left(a_{k-1}+b_{k-1}\right)
$$

Define

$$
\left[a_{k}, b_{k}\right]= \begin{cases}{\left[\frac{1}{3} a_{k-1}+\frac{2}{3} b_{k-1}, b_{k-1}\right]} & \text { if } \quad f_{k} \leq \frac{1}{2}\left(a_{k-1}+b_{k-1}\right) \\ {\left[a_{k-1}, \frac{2}{3} a_{k-1}+\frac{1}{3} b_{k-1}\right]} & \text { if } \quad f_{k}>\frac{1}{2}\left(a_{k-1}+b_{k-1}\right)\end{cases}
$$

The cases considered in this definition are illustrated in Figures 2 and 3.

FIG. 2. If f_{k} is in the olive interval, choose the navy interval as $\left[a_{k}, b_{k}\right]$

FIG. 3. If f_{k} is in the teal interval, choose the marron interval as $\left[a_{k}, b_{k}\right]$

If $f_{k} \leq \frac{1}{2}\left(a_{k-1}+b_{k-1}\right)$, by Lemma 6.1.6, the first line in the preceding definition yields:

$$
a_{k-1}<a_{k}=\frac{1}{3} a_{k-1}+\frac{2}{3} b_{k-1}<b_{k-1}=b_{k}
$$

and

$$
f_{k} \leq \frac{1}{2}\left(a_{k-1}+b_{k-1}\right)<a_{k}=\frac{1}{3} a_{k-1}+\frac{2}{3} b_{k-1}
$$

Hence,

$$
\begin{equation*}
a_{k}<b_{k}, \quad\left[a_{k}, b_{k}\right] \subset\left[a_{k-1}, b_{k-1}\right], \quad \text { and } \quad f_{k} \notin\left[a_{k}, b_{k}\right] \tag{6.1.7}
\end{equation*}
$$

Similarly, if $f_{k}>\frac{1}{2}\left(a_{k-1}+b_{k-1}\right)$, by Lemma 6.1.6, the second line in the preceding definition yields

$$
a_{k}=a_{k-1}<\frac{2}{3} a_{k-1}+\frac{1}{3} b_{k-1}=b_{k}<b_{k-1}
$$

and

$$
b_{k}=\frac{2}{3} a_{k-1}+\frac{1}{3} b_{k-1}<\frac{1}{2}\left(a_{k-1}+b_{k-1}\right)<f_{k}
$$

Thus, (6.1.7) holds in this case as well. Since $k \in \mathbb{N}$ was arbitrary, (6.1.7) holds for all $k \in \mathbb{N}$.

In conclusion, for every $k \in \mathbb{N}$, the interval $I_{k}=\left[a_{k}, b_{k}\right]$ is a bounded closed interval such that $I_{k} \subseteq I_{k-1}$, meeting all assumptions of the Nested Intervals Theorem, Theorem 6.1.5. Consequently, there exists $c \in \mathbb{R}$ such that $c \in I_{k}$ for all $k \in \mathbb{N}$. Together with the last statement in (6.1.7), we have:

$$
\forall k \in \mathbb{N} \quad c \in I_{k} \quad \text { and } \quad f_{k} \notin I_{k} .
$$

Therefore, for all $k \in \mathbb{N}, c \neq f_{k}$. Since

$$
c \in I_{1} \subset\left[a_{0}, b_{0}\right] \subseteq I
$$

the theorem is proved.

6.2. More on the sets \mathbb{N}, \mathbb{Z} and \mathbb{Q}

EXERCISE 6.2.1. If $b>0$, then there exists a natural number n such that $\frac{1}{n}<b$.
EXERCISE 6.2.2. If $c \in \mathbb{R}$ and $-\frac{1}{n}<c<\frac{1}{n}$ for all $n \in \mathbb{N}$, then $c=0$.
EXERCISE 6.2.3. If a and b are positive real numbers, then there exists a natural number n such that $b<n a$. This tells us that, even if a is quite small and b quite large, some integer multiple of a will exceed b.

Remark 6.2.4. Note that if we set $b=1$ we obtain the statement in Exercise 6.2.1 and if we set $a=1$, we obtain the Archimedean property.

ExERCISE 6.2.5. If $\alpha, \beta \in \mathbb{R} .0 \leq \alpha<\beta$ and $\beta-\alpha>1$, then there exists $m \in \mathbb{N}$ such that $\alpha<m<\beta$ (that is, there exists $m \in(\alpha, \beta) \cap \mathbb{N}$).

Solution. Consider the set $A=\{k \in \mathbb{N}: \alpha<k\}$. By Theorem 6.1.1 the set A is not empty. Clearly $A \subseteq \mathbb{N}$. By Theorem 5.3 .15 , the set A has a minimum. Put $m=\min (A)$. Now we have to prove that $\alpha<m<\beta$. Since $m \in A$, we have $\alpha<m$. In order to prove that $m<\beta$ we consider the following two cases: Case 1: $m=1$ and Case 2: $m \in \mathbb{N} \backslash\{1\}$.
Case 1. Assume that $m=1$. Since $1<\beta-\alpha<\beta$ we see that $m<\beta$.
Case 2. Assume that $m \in \mathbb{N} \backslash\{1\}$. By Theorem 5.1.6 (ii), $j=m-1 \in \mathbb{N}$. Clearly $j<m$. Is $j \in A$? NO: j is not in A since $j<m=\min A$. Since $j \in \mathbb{N}$ and $j \notin A$, we have $j \leq \alpha$. Add 1 to both sides of this inequality and we get $m=j+1 \leq \alpha+1<\beta$. Therefore $m<\beta$.

REMARK 6.2.6. The goal of Exercise 6.2 .5 is to prove the existence of a natural number with a certain property. In other words, given α and β we must construct a natural number m with the given property. What are possible tools for this construction? The proof above uses a remarkable idea how to do "constructions" of numbers:

Step 1: Identify a set of candidates for the desired number.
Step 2: The set of candidates is nice enough that it has an extreme element.
(In this case it is a minimum.)
Step 3: Where else could our special number be hiding?
Exercise 6.2.7. If $a, b \in \mathbb{R}$ and $a<b$, then there exists a rational number $r \in \mathbb{Q}$ such that $a<r<b$. Hint. Consider three cases: $0 \leq a<b, a<0<b$ and $a<b \leq 0$. Use 6.2.5 and 6.2.3 for the first case. The other two cases are left as exercises.

Exercise 6.2.8. Let $a, b \in \mathbb{R}$ and $a<b$. Prove that $\{x \in \mathbb{Q}: a<x<b\}$ is an infinite set.

ExErcise 6.2.9. Let $A \subset \mathbb{N}$ be a nonempty and bounded subset of \mathbb{N}. Prove that A is finite.

Exercise 6.2.10. A nonempty bounded below subset of \mathbb{Z} has a minimum.
Exercise 6.2.11. A nonempty bounded above subset of \mathbb{Z} has a maximum.
Exercise 6.2.12. Let $x \in \mathbb{R}$ be arbitrary. Prove that the set $\{k \in \mathbb{Z}: k \leq x\}$ has a maximum.

Exercise 6.2.13. Let $x \in \mathbb{R}$ be arbitrary. Prove that the set $\{k \in \mathbb{Z}: k \geq x\}$ has a minimum.

Based on the last two exercises we define the following two functions which relate real numbers to integers.

Definition 6.2.14. The floor function is defined by

$$
\forall x \in \mathbb{R} \quad \operatorname{flr}(x)=\lfloor x\rfloor:=\max \{k \in \mathbb{Z}: k \leq x\}
$$

The ceiling function is defined by

$$
\forall x \in \mathbb{R} \quad \operatorname{clg}(x)=\lceil x\rceil:=\min \{k \in \mathbb{Z}: x \leq k\}
$$

Exercise 6.2.15. Prove $x-1<\lfloor x\rfloor \leq x$ for all $x \in \mathbb{R}$.
Exercise 6.2.16. Prove $x \leq\lceil x\rceil<x+1$ for all $x \in \mathbb{R}$.
EXERCISE 6.2.17. Prove $x\left\lceil\frac{1}{x}\right\rceil \geq 1$ for all $x>0$.
EXERCISE 6.2.18. Let $a, b \in \mathbb{R}$ and assume $b-a \geq 1$. Prove $a<\frac{\lceil a\rceil+\lfloor b\rfloor}{2}<b$.
Exercise 6.2.19. Let $a, b \in \mathbb{R}$ and assume $a<b$. Prove

$$
a<\frac{\left\lceil\left\lceil\frac{1}{b-a}\right\rceil a\right\rceil+\left\lfloor\left\lceil\frac{1}{b-a}\right\rceil b\right\rfloor}{2\left\lceil\frac{1}{b-a}\right\rceil}<b
$$

6.3. Infimum and supremum

Definition 6.3.1. For a nonempty subset A of \mathbb{R}, a number $w \in \mathbb{R}$ is a supremum (or a least upper bound) of A if w is the minimum of the set of all upper bounds for A. That is, w has the following two properties:
(i) For all $x \in A$, we have $x \leq w$.
(ii) If $v \in \mathbb{R}$ is such that for all $x \in A$, we have $x \leq v$, then $w \leq v$.

Definition 6.3.2. For a nonempty subset A of \mathbb{R}, a number $u \in \mathbb{R}$ is a infimum (or a greatest lower bound) of A if v is the maximum of the set of all lower bounds for A. That is, v has the following two properties:
(i) For all $x \in A$, we have $u \leq x$.
(ii) If $v \in \mathbb{R}$ is such that for all $x \in A$, we have $v \leq x$, then $v \leq u$.

If u and w are as in Definitions 6.3.1 and 6.3.2, we write

$$
w=\sup A(=\operatorname{lub} A) \quad \text { and } \quad u=\inf A(=\operatorname{glb} A)
$$

The following theorem gives the standard form of the Completeness Axiom.
Theorem 6.3.3. Every nonempty subset of \mathbb{R} that is bounded above has a supremum.

Proof. Let $A \subseteq \mathbb{R}$ be a nonempty set and assume that A is bounded above. That is, there exists $b \in \mathbb{R}$ such that for all $x \in A$ we have $x \leq b$. Denote by B the set of all upper bounds of A. That is,

$$
B=\{y \in \mathbb{R}: \forall x \in A \quad x \leq y\}
$$

Clearly, $b \in B$, so, B is a nonempty subset of \mathbb{R}. By the definition of B we have

$$
\forall x \in A \quad \forall y \in B \quad x \leq y
$$

We proved that the sets A and B satisfy all the assumptions of the Completeness Axiom. The application of the Completeness Axiom yields that there exists $c \in \mathbb{R}$ such that

$$
\forall x \in A \quad \forall y \in B \quad x \leq c \leq y
$$

Since for all $x \in A$ we have $x \leq c$ we conclude $c \in B$. Since for all $y \in B$ we have $c \leq y$ we conclude $c=\min (B)$. Thus, $c \in \mathbb{R}$ is the minimum of the set of all upper bounds of A, we have

$$
c=\sup (A) .
$$

This proves the existence of a supremum of a nonempty subset of \mathbb{R} that is bounded above.

ThEOREM 6.3.4. Every nonempty subset of \mathbb{R} that is bounded below has an infimum.

Proof. Let $B \subseteq \mathbb{R}$ be a nonempty set and assume that B is bounded below. That is, there exists $a \in \mathbb{R}$ such that for all $y \in B$ we have $a \leq y$. Denote by A the set of all lower bounds of B. That is,

$$
A=\{x \in \mathbb{R}: \forall y \in B \quad x \leq y\}
$$

Clearly, $a \in A$, so, A is a nonempty subset of \mathbb{R}. By the definition of A we have

$$
\forall x \in A \quad \forall y \in B \quad x \leq y
$$

We proved that the sets A and B satisfy all the assumptions of the Completeness Axiom. The application of the Completeness Axiom yields that there exists $c \in \mathbb{R}$ such that

$$
\forall x \in A \quad \forall y \in B \quad x \leq c \leq y
$$

Since for all $y \in B$ we have $c \leq y$ we conclude $c \in A$. Since for all $x \in A$ we have $x \leq c$ we conclude $c=\max (A)$. Thus, $c \in \mathbb{R}$ is the maximum of the set of all lower bounds of A, we have

$$
c=\inf (B)
$$

This proves the existence of an infimim of a nonempty subset of \mathbb{R} that is bounded below.

ExErcise 6.3.5. Let A be a nonempty subset of \mathbb{R} that is bounded above. Then the set of all upper bounds of A is the closed unbounded interval, see Figure 6,

$$
\mathbb{R}_{\geq \sup (A)}=\{y \in \mathbb{R}: \sup (A) \leq y\}
$$

Exercise 6.3.6. Let A be a nonempty subset of \mathbb{R} that is bounded below. Then the set of all lower bounds of A is the closed unbounded interval, see Figure 7,

$$
\mathbb{R}_{\leq \inf (A)}=\{x \in \mathbb{R}: x \leq \inf (A)\}
$$

lower bounds of $A \overbrace{\inf (A)}^{\sim m} A$
Fig. 7. The lower bounds and the infimum of the set A

Remark 6.3.7. Here I describe the setting in Figures 6 and 7. The gray line represents the real number line. The navy blue set A is a set of real numbers, in general infinite. The numbers in the set A are represented by navy blue ticks. Thus, the numbers in A are indicated by points where the ticks intersect the gray line. Keep in mind that it is not possible to depict infinitely many numbers in a picture. In Figure 6, the upper bounds of A are colored olive. The minimum of these upper bounds, the supremum, is marked by a small olive square bracket. In Figure 7, the lower bounds of A are colored orange. The maximum of these lower bounds, the infimum, is marked by a small orange square bracket.

Exercise 6.3.8. Let A be a nonempty subset of \mathbb{R} that is bounded below. Prove that $\alpha=\inf (A)$ if and only if
(a) α is a lower bound of A, that is, $\alpha \leq x$, for all $x \in A$;
(b) for each $\epsilon>0$ there exists $x \in A$ such that $x<\alpha+\epsilon$.

Notice that x in (b) depends on ϵ. Sometimes it is useful to indicate this dependence by writing x_{ϵ} or $x(\epsilon)$ instead of x.

ExERCISE 6.3.9. State and prove a characterization of $\sup (A)$ which is analogous to the characterization of $\inf (A)$ given in Exercise 6.3.8.

Exercise 6.3.10. Let A be a nonempty subset of \mathbb{R} that is bounded above. Prove: If $(\sup A) \in A$, then $\sup (A)=\max (A)$.

State and prove the analogous statement for $\inf (A)$.

REMARK 6.3.11 (How to think about the infimum and the supremum). One of the main features of finite sets is that each finite set has a minimum and a maximum. As we saw in Theorem 5.3.10, every infinite set has a subset that does not have a minimum or a subset that does not have a maximum. This is a problem with infinite sets. To some extent, not having a maximum or minimum is inevitable for an infinite set. Therefore, we have to seek surrogates for the minimum and maximum. That is what the infimum and supremum are. They are surrogates for minimums and maximums.

ExErcise 6.3.12. Find the supremum and infimum of the sets

$$
A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \quad \text { and } \quad B=\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}
$$

Formal proofs are required. (By a formal proof, I mean a rigorous mathematical proof of properties (i) and (ii) in Definitions 6.3.1 and 6.3.2.)

EXERCISE 6.3.13. Find the supremum and infimum of the set $\left\{\frac{n^{(-1)^{n}}}{n+1}: n \in \mathbb{N}\right\}$.
ExERCISE 6.3.14. Let A be a nonempty and bounded above subset of \mathbb{R}. If B is a nonempty subset of A, then B is bounded above and $\sup (B) \leq \sup (A)$. Formulate the corresponding statement for the infimums.

Exercise 6.3.15. Let A and B be nonempty bounded above subsets of \mathbb{R}. Prove

$$
\sup (A \cup B)=\max \{\sup (A), \sup (B)\}
$$

Exercise 6.3.16. Let A and B be nonempty subsets of \mathbb{R} such that for all $x \in A$ and for all $y \in B$ we have $x \leq y$. Prove that $\sup (A) \leq \inf (B)$.

If the condition $x \leq y$ is replaced by the condition $x<y$, can we conclude that $\sup (A)<\inf (B) ?$

Exercise 6.3.17. Suppose that A and B are nonempty subsets of \mathbb{R} such that for all $x \in A$ and for all $y \in B$ we have $x \leq y$. Prove that $\sup (A)=\inf (B)$ if and only if for each $\delta>0$ there exist $x \in A$ and $y \in B$ such that $x+\delta>y$.

ExERCISE 6.3.18. Let A be a nonempty and bounded above subset of \mathbb{R}, and let F be a finite subset of A. If $(\sup A) \notin A$, then $\sup (A \backslash F)=\sup (A)$.

State and prove an analogous statement for $\inf (A) ?$
Exercise 6.3.19. Consider the set

$$
B=\left\{x \in \mathbb{R}: x>0 \quad \text { and } x^{2}>2\right\}
$$

Prove that A is nonempty and bounded below. Put $\alpha=\inf (B)$. Prove that $\alpha^{2}=2$.
Note: Do this exercise using only the properties of the infimum. Do not use the existence of $\sqrt{2}$ proved in Exercise 6.1.2.

Exercise 6.3.20. Let $a>0$. Consider the set

$$
B=\left\{x \in \mathbb{R}: x>0 \quad \text { and } \quad x^{2}>a\right\}
$$

Prove that B is nonempty and bounded below. Put $\alpha=\inf (B)$. Prove that $\alpha^{2}=a$.
Exercise 6.3.21. Let $a>0$ and $n \in \mathbb{N}$. Consider the set

$$
A=\left\{x \in \mathbb{R}: x>0 \quad \text { and } \quad x^{n}>a\right\} .
$$

Prove that A is nonempty and bounded. Put $\alpha=\inf (A)$. Prove that $\alpha^{n}=a$.

THEOREM 6.3.22. Let $n \in \mathbb{N}$. Prove that the function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ defined by

$$
\forall x \in \mathbb{R}_{\geq 0} \quad f(x)=x^{n}
$$

is a bijection.
Proof. In this proof we will use Bernoulli's Inequality proved in Exercise 5.2.8:

$$
\begin{equation*}
\forall n \in \mathbb{N} \quad \forall x \in \mathbb{R}_{>-1} \quad(1+x)^{n} \geq 1+n x \tag{6.3.1}
\end{equation*}
$$

and the inequality proved in Exercise 5.2.9:

$$
\begin{equation*}
\forall n \in \mathbb{N} \quad \forall x \in[0,1] \quad(1+x)^{n} \leq 1+\left(2^{n}-1\right) x \tag{6.3.2}
\end{equation*}
$$

First we will prove that $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is a surjection. Let $a \in \mathbb{R}_{\geq 0}$ be arbitrary. If $a=0$, then $f(0)=0$. Let $a>0$. Define the subset of \mathbb{R} as follows:

$$
A=\left\{x \in \mathbb{R}: x>0 \wedge x^{n}>a\right\}
$$

To be continued.
Definition 6.3.23. The inverse of the bijection $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ from Theorem 6.3.22 is called the n-th root function. For $x \geq 0$ the value of the n-th root function at x is denoted by $\sqrt[n]{x}$ and it is called the n-th root of x.

Exercise 6.3 .24 . Let A be a nonempty subset of \mathbb{R}. Define the difference set A_{d} of A to be

$$
A_{d}:=\{b-a: a, b \in A \text { and } a<b\}
$$

If A is infinite and bounded, then $\inf \left(A_{d}\right)=0$.
REMARK 6.3.25. A partial contrapositive of the last exercise is as follows. If A is infinite and $\inf \left(A_{d}\right)>0$, then A is not bounded. Since we proved that \mathbb{N} is infinite and clearly $\mathbb{N}_{d}=\mathbb{N}$ and hence $\inf \left(\mathbb{N}_{d}\right)=\min \left(\mathbb{N}_{d}\right)=1$, the contrapositive of Exercise 6.3.24 implies that \mathbb{N} is not bounded. This provides an alternative proof of the Archimedean property proved in Theorem 6.1.1. Notice that the existence of the floor and the ceiling function and the fact that there are rational numbers in any open interval all depend on the Archimedean property, and via the Archimedean property these properties depend on the Completeness Axiom.

In conclusion, the set \mathbb{R} is completely described by Axioms 1 through 15 and the Completeness Axiom. All claims about real numbers can be proved using these 16 axioms and their consequences. As you probably already noticed, in proofs we also use elementary properties of sets and operations with sets.

CHAPTER 7

The topology of \mathbb{R}

7.1. The topology of \mathbb{R}

The terminology that we introduce in the next definition provides the essential vocabulary of the modern analysis.

Definition 7.1.1 (Topological notions in \mathbb{R}). All points in this definition are elements of \mathbb{R} and all sets are subsets of \mathbb{R}.
(a) Let $\epsilon>0$. A neighborhood (or ϵ-neighborhood) of a point a is the set

$$
N(a, \epsilon)=\{x \in \mathbb{R}:|x-a|<\epsilon\}=(a-\epsilon, a+\epsilon)
$$

The number ϵ is called the radius of $N(a, \epsilon)$.
(b) A point a is an accumulation point of a set E if every neighborhood of a contains a point $x \neq a$ such that $x \in E$. That is, a is an accumulation point of the set E if

$$
E \cap(N(a, \epsilon) \backslash\{a\}) \neq \emptyset \quad \text { for all } \quad \epsilon>0
$$

(c) The set of all accumulation points of a set E is denoted by E^{\prime}.
(d) A set E is closed if it contains all its accumulation points. That is, E is closed if the inclusion $E^{\prime} \subseteq E$ holds.
(e) The closure of a set E is defined as the union of $E \cup E^{\prime}$. It is denoted by \bar{E}.
(f) A point a is an interior point of the set E if there is a neighborhood of a that is a subset of E. That is, a is an interior point of E if there exists $\epsilon>0$ such that $N(a, \epsilon) \subseteq E$.
(g) The set of all the interior points of a set E is called the interior of E. It is denoted by E°.
(h) A set E is open if every point of E is an interior point of E. That is, E is open if $E=E^{\circ}$.
(i) The boundary of a set E is the set $\bar{E} \backslash E^{\circ}$. It is denoted by ∂E.
(j) A set E is compact if every infinite subset of E has an accumulation point in E.
(k) Let $E \subseteq F$. A set E is dense in F if every neighborhood of every point in F contains a point of E.

Exercise 7.1.2. Consider the set $E=\{0,1\}$. Find $E^{\prime}, \bar{E}, E^{\circ}$ and ∂E.
Exercise 7.1.3. Find $\mathbb{Z}^{\prime}, \overline{\mathbb{Z}}, \mathbb{Z}^{\circ}$ and $\partial \mathbb{Z}$.
Exercise 7.1.4. Prove that for an arbitrary finite subset F of \mathbb{R} we have $F^{\prime}=\emptyset$.
Exercise 7.1.5. (i) Let A and B be subsets of \mathbb{R}. Prove that

$$
(A \cup B)^{\prime}=A^{\prime} \cup B^{\prime}
$$

(ii) Let $n \in \mathbb{N}$. Let A_{1}, \ldots, A_{n} be subsets of \mathbb{R}. Then

$$
\left(\bigcup_{k=1}^{n} A_{k}\right)^{\prime}=\bigcup_{k=1}^{n}\left(A_{k}\right)^{\prime}
$$

EXERCISE 7.1.6. Find all accumulation points of the set $\left\{\frac{n^{(-1)^{n}}}{n+1}: n \in \mathbb{N}\right\}$. Provide formal proofs.

Exercise 7.1.7. Find all accumulation points of $\left\{\frac{4}{n}+\frac{n}{4}-\left\lfloor\frac{n}{4}\right\rfloor: n \in \mathbb{N}\right\}$. Provide formal proofs.

Exercise 7.1.8. Let $E \subset \mathbb{R}$. Prove $\bar{E}=E \cup \partial E$.
ExErcise 7.1.9. Let $A \subset \mathbb{R}$ be a bounded set. If A does not have a maximum, then $\sup A$ is an accumulation point of A. State and prove the analogous statement for $\inf A$.

Exercise 7.1.10. Let $a<b$. Prove that the open interval (a, b) is an open set. Prove that the complement of (a, b), that is the set $\mathbb{R} \backslash(a, b)$ is closed. (Hint: State the contrapositive of the implication in the definition of a closed set. Simplify the contrapositive using the concept of an interior point.)

Exercise 7.1.11. Let $a<b$. Prove that the closed interval $[a, b]$ is a closed set. Prove that the complement of $[a, b]$, that is the set $\mathbb{R} \backslash[a, b]$ is open.

Exercise 7.1.12. Let $a<b$. Consider the interval $[a, b)$. Is this a closed set? Is it open?

ExERCISE 7.1.13. Is \mathbb{R} a closed set? Is it open?
Exercise 7.1.14. Prove that $G \subset \mathbb{R}$ is open if and only if $\mathbb{R} \backslash G$ is closed.
Exercise 7.1.15. Let $a<b$. Prove that the closed interval $[a, b]$ is a compact set.

Hint 1: Use Theorem 5.3.10 and Exercise 7.1.9.
Hint 2: Use Cantor's intersection theorem. Consider an arbitrary infinite subset E of $[a, b]$. Define a sequence of closed intervals $\left[a_{n}, b_{n}\right], n \in \mathbb{N}$, such that, for all $n \in \mathbb{N}$,

$$
\left[a_{n}, b_{n}\right] \subseteq[a, b], \quad\left[a_{n+1}, b_{n+1}\right] \subseteq\left[a_{n}, b_{n}\right], \quad b_{n}-a_{n}=(b-a) / 2^{n-1}
$$

and, most importantly, $\left[a_{n}, b_{n}\right] \cap E$ is infinite.
Definition 7.1.16. A family \mathcal{G} of open sets is an open cover for a set E if

$$
E \subseteq \bigcup\{G: G \in \mathcal{G}\}
$$

Definition 7.1.17. If every open cover of a set E has a finite subfamily that is also an open cover of E, than we say that E has the Heine-Borel property.

Exercise 7.1.18. Let $a<b$. Prove that the closed interval $[a, b]$ has the HeineBorel property.

Hint: Let \mathcal{G} be an arbitrary open cover of $[a, b]$. Consider the set

$$
S=\left\{x \in(a, b]: \exists n \in \mathbb{N} \text { and } \exists G_{1}, \ldots, G_{n} \in \mathcal{G} \text { such that }[a, x] \subseteq \bigcup_{j=1}^{n} G_{j}\right\}
$$

7.1.1. The structure of open sets in \mathbb{R}.

Definition 7.1.19. A subset $I \subseteq \mathbb{R}$ is an open interval if one of the following four conditions is satisfied

- $I=\mathbb{R}$.
- There exists $a \in \mathbb{R}$ such that $I=\mathbb{R}_{<a}$.
- There exists $b \in \mathbb{R}$ such that $I=\mathbb{R}_{>b}$.
- There exist $a, b \in \mathbb{R}$ such that $a<b$ and $I=(a, b)$.

ExERCISE 7.1.20. Let \mathcal{I} be an infinite family of open mutually disjoint intervals. (Mutually disjoint means that if $I_{1}, I_{2} \in \mathcal{I}$ and $I_{1} \neq I_{2}$, then $I_{1} \cap I_{2} \neq \emptyset$.) Prove that \mathcal{I} is countable. Hint: Construct a surjection $f: \mathbb{Q} \rightarrow \mathcal{I}$.

ExErcise 7.1.21. Let G be a nonempty open subset of \mathbb{R}. Assume that $\mathbb{R} \backslash G$ is neither bounded above nor below.
(1) Prove that for each $x \in G$ there exist $a, b \in \mathbb{R} \backslash G$ such that $a<b$, $x \in(a, b)$ and $(a, b) \subseteq G$. Hint: Consider the sets

$$
\{\alpha: \alpha<x,(\alpha, x] \subset G\} \quad \text { and } \quad\{\beta: x<\beta,[x, \beta) \subset G\} .
$$

Prove that both sets are nonempty and bounded, so a and b could be their infimum and supremum, respectively.
(2) Let $a, b, c, d \in \mathbb{R} \backslash G$ be such that $a<b, c<d$ and such that the intervals $(a, b),(c, d)$ are subsets of G. Then either $(a, b)=(c, d)$ or $(a, b) \cap(c, d)=\emptyset$. Hint: Assume $x \in(a, b) \cap(c, d)$. Then $a<x$ and $c<x$. Notice $c<a$, implies $a \in G$. Since $a \notin G, a \leq c$. Similarly $c \leq a$. Thus $a=c$. Similarly $b=d$.
(3) Prove that there exists a finite or countable family of finite open mutually disjoint intervals whose union equals G. Hint: Use previous two parts and Exercise 7.1.20.

Exercise 7.1.22. Let G be a nonempty open subset of \mathbb{R}. Then there exists a finite or countable family of open mutually disjoint intervals whose union equals G. Hint: Assume $\mathbb{R} \backslash G \neq \emptyset$. Prove: if $\mathbb{R} \backslash G$ bounded below, then there exists $a \in \mathbb{R} \backslash G$ such that $(-\infty, a) \subseteq G$. Prove: if $\mathbb{R} \backslash G$ bounded above, then there exists $b \in \mathbb{R} \backslash G$ such that $(b,+\infty) \subseteq G$. Then consider all possible cases for $\mathbb{R} \backslash G$.

7.2. The topology of \mathbb{R}^{2}

Recall that \mathbb{R}^{2} is the set of all ordered pairs (x, y) with $x, y \in \mathbb{R}$. The essential notion in Definition 7.1.1 is that of a neighborhood of a point. This notion is based on the idea of distance between real numbers x and y which is expressed simply as the absolute value of the difference $|x-y|$. Since we have a well established concept of distance in \mathbb{R}^{2}, the notions introduced in Section 7.1 extend to \mathbb{R}^{2}. Recall that the Euclidean distance between points $\mathbf{a}=\left(a_{1}, a_{2}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}\right)$ in \mathbb{R}^{2} is given as

$$
d(\mathbf{a}, \mathbf{b})=\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}}
$$

Definition 7.2.1. A rectangle is a subset of \mathbb{R}^{2} which is a cross product of two intervals.

Definition 7.2.2. A set $E \subset \mathbb{R}^{2}$ is bounded if there exists $a, b, c, d \in \mathbb{R}$ be such that $a<b$ and $c<d$, and such that $E \subseteq[a, b] \times[c, d]$.

Definition 7.2 .3 (Topological notions in \mathbb{R}^{2}). All points in this definition are elements of \mathbb{R}^{2} and all sets are subsets of \mathbb{R}^{2}.
(a) Let $\epsilon>0$. A neighborhood (or ϵ-neighborhood) of a point \mathbf{a} is the set

$$
B(\mathbf{a}, \epsilon)=\left\{\mathbf{x} \in \mathbb{R}^{2}: d(\mathbf{a}, \mathbf{x})<\epsilon\right\} .
$$

Commonly $B(\mathbf{a}, \epsilon)$ is called an open ball. The number ϵ is called the radius of $B(\mathbf{a}, \epsilon)$.
(b) A point \mathbf{a} is an accumulation point of a set E if every neighborhood of a contains a point $\mathbf{x} \neq \mathbf{a}$ such that $\mathbf{x} \in E$. That is, \mathbf{a} is an accumulation point of the set E if

$$
E \bigcap(B(\mathbf{a}, \epsilon) \backslash\{\mathbf{a}\}) \neq \emptyset \quad \text { for all } \quad \epsilon>0
$$

(c) The set of all accumulation points of a set E is denoted by E^{\prime}.
(d) A set E is closed if it contains all its accumulation points. That is, E is closed if the inclusion $E^{\prime} \subset E$ holds.
(e) The closure of a set E is defined as the union of $E \cup E^{\prime}$. It is denoted by \bar{E}.
(f) A point \mathbf{a} is an interior point of the set E if there is a neighborhood of a that is a subset of E. That is, a is an interior point of E if there exists $\epsilon>0$ such that $B(\mathbf{a}, \epsilon) \subseteq E$.
(g) The set of all the interior points of a set E is called the interior of E. It is denoted by E°.
(h) A set E is open if every point of E is an interior point of E. That is, E is open if $E=E^{\circ}$.
(i) The boundary of a set E is the set $\bar{E} \backslash E^{\circ}$. It is denoted by ∂E.
(j) A set E is compact if every infinite subset of E has an accumulation point in E.
(k) Let $E \subseteq F$. A set E is dense in F if every neighborhood of every point in F contains a point of E.

ExErcise 7.2.4. Prove that a subset of \mathbb{R}^{2} is bounded if and only if it is contained in an open ball.

Exercise 7.2.5. Consider the rectangle $R=[0,1] \times[-1,1]$ and define the set $E=R \cup\{(-1,0)\}$. Find $E^{\prime}, \bar{E}, E^{\circ}$ and ∂E.

ExErcise 7.2.6. Prove the triangle inequality for the Euclidean distance: For every $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{2}$ we have

$$
d(\mathbf{a}, \mathbf{c}) \leq d(\mathbf{a}, \mathbf{b})+d(\mathbf{b}, \mathbf{c}) .
$$

Exercise 7.2.7 (Hausdorff Property). Let \mathbf{a} and \mathbf{b} be arbitrary distinct point in \mathbb{R}^{2}. Prove that there exist a neighborhood of \mathbf{a} and a neighborhood of \mathbf{b} which are disjoint sets.

ExERCISE 7.2.8. Let $E \subset \mathbb{R}^{2}$. Prove that E is open if and only if $\mathbb{R}^{2} \backslash E$ is closed.
ExErcise 7.2.9. Prove that the intersection and the union of two open sets is open.

ExERCISE 7.2.10. Does the previous exercise hold true for a countable family of open sets?

Exercise 7.2.11. Prove that the intersection and the union of two closed sets is closed.

ExERCISE 7.2.12. Does the previous exercise hold true for a countable family of closed sets?

Exercise 7.2.13. Let $a, b, c, d \in \mathbb{R}$ be such that $a<b$ and $c<d$. Prove that the rectangle $[a, b] \times[c, d]$ is a compact set.

CHAPTER 8

Sequences in \mathbb{R}

8.1. Definitions and examples

Definition 8.1.1. A sequence in \mathbb{R} is a function whose domain is \mathbb{N} and whose range is in \mathbb{R}.

Let $s: \mathbb{N} \rightarrow \mathbb{R}$ be a sequence in \mathbb{R}. Then the values of s are

$$
s(1), s(2), s(3), \ldots, s(n), \ldots
$$

It is customary to write s_{n} instead of $s(n)$ for the values of a sequence. Sometimes a sequence will be specified by listing its first few terms

$$
s_{1}, s_{2}, s_{3}, s_{4}, \cdots
$$

and sometimes by listing of all its terms $\left\{s_{n}\right\}_{n=1}^{\infty}$ or $\left\{s_{n}\right\}$. One way of specifying a sequence is to give a formula, or a recursion formula for its n-th term s_{n}.

REmark 8.1.2. In the above notation s is the "name" of the sequence and $n \in \mathbb{N}$ is the independent variable.

Remark 8.1.3. Notice the difference between the following two expressions:
$\left\{s_{n}\right\}_{n=1}^{\infty} \quad$ This expression denotes a function (sequence).
$\left\{s_{n}: n \in \mathbb{N}\right\} \quad$ This expression denotes a set: The range of a sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$.
For example $\left\{1-(-1)^{n}\right\}_{n=1}^{\infty}$ stands for the function $n \mapsto 1-(-1)^{n}, n \in \mathbb{N}$, while

$$
\left\{1-(-1)^{n}: n \in \mathbb{N}\right\}=\{0,2\}
$$

Example 8.1.4. Here we give examples of sequences given by a formula. In each formula below $n \in \mathbb{N}$.
(a) n,
(b) n^{2},
(c) \sqrt{n},
(d) $(-1)^{n}$,
(e) $\frac{1}{n}$,
(f) $\frac{1}{n^{2}}$,
(g) $\frac{1}{\sqrt{n}}$,
(h) $1-\frac{(-1)^{n}}{n}$,
(i) $\frac{1}{n!}$,
(j) $2^{1 / n}$,
(k) $n^{1 / n}$,
(l) $\quad n^{(-1)^{n}}$,
(m) $\frac{9^{n}}{n!}$,
(n) $\frac{(-1)^{n+1}}{2 n-1}$,
(o) $\frac{n^{(-1)^{n}}}{n+1}$,
(р) $\left(\frac{e}{n}\right)^{n} \frac{n!}{\sqrt{n}}$.

Example 8.1.5. Few more sequences given by a formula are
(a) $\left\{\sqrt{n^{2}+1}-n\right\}_{n=1}^{\infty}$,
(b) $\left\{\sqrt{n^{2}+n}-n\right\}_{n=1}^{\infty}$,
(c) $\{\sqrt{n+1}-\sqrt{n}\}_{n=1}^{\infty}$.

Example 8.1.6. In this example we give several recursively defined sequences.
(a) $s_{1}=1 \quad$ and $(\forall n \in \mathbb{N}) s_{n+1}=-\frac{s_{n}}{2}$,
(b) $x_{1}=1 \quad$ and $(\forall n \in \mathbb{N}) x_{n+1}=1+\frac{x_{n}}{4}$,
(c) $x_{1}=2 \quad$ and $(\forall n \in \mathbb{N}) x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}}$,
(d) $a_{1}=\sqrt{2}$ and $(\forall n \in \mathbb{N}) a_{n+1}=\sqrt{2+a_{n}}$,
(e) $s_{1}=1$ and $(\forall n \in \mathbb{N}) s_{n+1}=\sqrt{1+s_{n}}$,
(f) $x_{1}=0 \quad$ and $(\forall n \in \mathbb{N}) \quad x_{n+1}=\frac{9+x_{n}}{10}$.

For a recursively defined sequence it is useful to evaluate the values of the first few terms to get an idea how sequence behaves.

Example 8.1.7. The most important examples of sequences are listed below:
$b_{n}=a, n \in \mathbb{N}$, where $a \in \mathbb{R}$,
$p_{n}=a^{n}, n \in \mathbb{N}$, where $-1<a<1$,
$E_{n}=\left(1+\frac{1}{n}\right)^{n}, \quad n \in \mathbb{N}$,
$G_{1}=a+a x$ and $(\forall n \in \mathbb{N}) G_{n+1}=G_{n}+a x^{n+1}$, where $-1<x<1$,
$S_{1}=2$ and $(\forall n \in \mathbb{N}) \quad S_{n+1}=S_{n}+\frac{1}{(n+1)!}$,
$v_{1}=1+a$ and $(\forall n \in \mathbb{N}) \quad v_{n+1}=v_{n}+\frac{a^{n+1}}{(n+1)!}, \quad$ where $a \in \mathbb{R}$.
Definition 8.1.8. Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{R}. A sequence which is recursively defined by

$$
\begin{equation*}
S_{1}=a_{1} \quad \text { and } \quad(\forall n \in \mathbb{N}) \quad S_{n+1}=S_{n}+a_{n+1} \tag{8.1.7}
\end{equation*}
$$

is called a sequence of partial sum corresponding to $\left\{a_{n}\right\}$.
Example 8.1.9. The sequences of partial sums associated with the sequences in Example 8.1.4 (e), (f) and (n) are important examples for Definition 8.1.8. Notice also that the sequences in (8.1.4), (8.1.5) and (8.1.6) are sequences of partial sums. All of these are very important.

8.2. Bounded sequences

Definition 8.2.1. Let $\left\{s_{n}\right\}$ be a sequence in \mathbb{R}.
(1) If a real number M satisfies

$$
s_{n} \leq M \quad \text { for all } \quad n \in \mathbb{N}
$$

then M is called an upper bound of $\left\{s_{n}\right\}$ and the sequence $\left\{s_{n}\right\}$ is said to be bounded above.
(2) If a real number m satisfies

$$
m \leq s_{n} \quad \text { for all } \quad n \in \mathbb{N}
$$

then m is called a lower bound of $\left\{s_{n}\right\}$ and the sequence $\left\{s_{n}\right\}$ is said to be bounded below.
(3) The sequence $\left\{s_{n}\right\}$ is said to be bounded if it is bounded above and bounded below.

REmark 8.2.2. Clearly, a sequence $\left\{s_{n}\right\}$ is bounded above if and only if the set $\left\{s_{n}: n \in \mathbb{N}\right\}$ is bounded above. Similarly, a sequence $\left\{s_{n}\right\}$ is bounded below if and only if the set $\left\{s_{n}: n \in \mathbb{N}\right\}$ is bounded below.

REmARK 8.2.3. The sequence $\left\{s_{n}\right\}$ is bounded if and only if there exists a real number $K>0$ such that $\left|s_{n}\right| \leq K$ for all $n \in \mathbb{N}$.

ExErcise 8.2.4. There is a huge task here. For each sequence given in this section it is of interest to determine whether it is bounded or not. As usual, some of the proofs are easy, some are hard. It is important to do few easy proofs and observe their structure. This will provide the setting to appreciate proofs for hard examples.

8.3. The definition of a convergent sequence

Definition 8.3.1. A sequence $\left\{s_{n}\right\}$ is a constant sequence if there exists $L \in \mathbb{R}$ such that $s_{n}=L$ for all $n \in \mathbb{N}$.

ExErcise 8.3.2. Prove that the sequence $s_{n}=\left\lfloor\frac{3 n-1}{2 n}\right\rfloor, n \in \mathbb{N}$, is a constant sequence.

Definition 8.3.3. A sequence $\left\{s_{n}\right\}$ is eventually constant if there exists $L \in \mathbb{R}$ and $N_{0} \in \mathbb{R}$ such that $s_{n}=L$ for all $n \in \mathbb{N}$ such that $n>N_{0}$.

ExErcise 8.3.4. Prove that the sequence $s_{n}=\left\lceil\frac{3 n-2}{2 n+3}\right\rceil, n \in \mathbb{N}$, is eventually constant.

Exercise 8.3.5. Prove that the sequence $s_{n}=\left\lfloor\frac{5 n-(-1)^{n}}{n / 2+5}\right\rfloor, n \in \mathbb{N}$, is eventually constant.

Definition 8.3.6. A sequence $\left\{s_{n}\right\}$ converges if there exists $L \in \mathbb{R}$ such that for each $\epsilon>0$ there exists a real number $N(\epsilon)$ such that

$$
n \in \mathbb{N}, \quad n>N(\epsilon) \quad \Rightarrow \quad\left|s_{n}-L\right|<\epsilon .
$$

The number L is called the limit of the sequence $\left\{s_{n}\right\}$. We also say that $\left\{s_{n}\right\}$ converges to L and write

$$
\lim _{n \rightarrow \infty} s_{n}=L \quad \text { or } \quad s_{n} \rightarrow L \quad(n \rightarrow \infty)
$$

If a sequence does not converge we say that it diverges.
REmark 8.3.7. The definition of convergence is a complicated statement. Formally it can be written as:

$$
\exists L \in \mathbb{R} \text { s.t. } \forall \epsilon>0 \quad \exists N(\epsilon) \in \mathbb{R} \text { s.t. } \forall n \in \mathbb{N}, \quad n>N(\epsilon) \Rightarrow\left|s_{n}-L\right|<\epsilon .
$$

EXERCISE 8.3.8. State the negation of the statement in remark 8.3.7.
8.3.1. My informal discussion of convergence. It is easy to agree that the constant sequences are simplest possible sequences. For example the sequence

$$
\begin{array}{llllllllllllllllllll}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
c_{n} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

or formally, $c_{n}=1$ for all $n \in \mathbb{N}$, is a very simple sequence. No action here! In this case, clearly, $\lim _{n \rightarrow \infty} c_{n}=1$.

Now, I define $s_{n}=\frac{n-(-1)^{n}}{n}, n \in \mathbb{N}$, and I ask: Is $\left\{s_{n}\right\}$ a constant sequence? Just looking at the first few terms

$$
\begin{array}{llllllllllllllllll}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
s_{n} & 2 & \frac{1}{2} & \frac{4}{3} & \frac{3}{4} & \frac{6}{5} & \frac{5}{6} & \frac{8}{7} & \frac{7}{8} & \frac{10}{9} & \frac{9}{10} & \frac{12}{11} & \frac{11}{12} & \frac{14}{13} & \frac{13}{14} & \frac{16}{15} & \frac{15}{16} & \frac{18}{17}
\end{array}
$$

indicates that this sequence is not constant. The table above also indicates that the sequence $\left\{s_{n}\right\}$ is not eventually constant. But imagine that you have a calculator which is capable of displaying only one decimal place. On this calculator the first terms of this sequence would look like:

$$
\begin{array}{cccccccccccccccc}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
s_{n} & 2.0 & 0.5 & 1.3 & 0.8 & 1.2 & 0.8 & 1.1 & 0.9 & 1.1 & 0.9 & 1.1 & 0.9 & 1.1 & 0.9 & 1.1
\end{array}
$$

and the next 15 terms would look like:

n	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
s_{n}	0.9	1.1	0.9	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Basically, after the 20-th term this calculator does not distinguish s_{n} from 1. That is, this calculator leads us to think that $\left\{s_{n}\right\}$ is eventually constant. Why is this? On this calculator all numbers between $0.95=1-1 / 20$ and $1.05=1+1 / 20$ are represented as 1 , and for our sequence we can prove that

$$
n \in \mathbb{N}, \quad n>20 \quad \Rightarrow \quad 1-\frac{1}{20}<s_{n}<1+\frac{1}{20}
$$

or, equivalently,

$$
n \in \mathbb{N}, \quad n>20 \quad \Rightarrow \quad\left|s_{n}-1\right|<\frac{1}{20}
$$

In the notation of Definition 8.3.6 this means $N(1 / 20)=20$.
One can reasonably object that the above calculator is not very powerful and propose to use a calculator that can display three decimal places. Then the terms of $\left\{s_{n}\right\}$ starting with $n=21$ are

n	21	22	23	24	25	26	27	28	29	30
s_{n}	1.048	0.955	1.043	0.958	1.040	0.962	1.037	0.964	1.034	0.967

Now the question is: Can we fool this powerful calculator to think that $\left\{s_{n}\right\}$ is eventually constant? Notice that on this calculator all numbers between $0.9995=$ $1-1 / 2000$ and $1.0005=1+1 / 2000$ are represented as 1 . Therefore, in the notation of Definition 8.3.6, we need $N(1 / 2000)$ such that

$$
n \in \mathbb{N}, \quad n>N(1 / 2000) \quad \Rightarrow \quad 1-\frac{1}{2000}<s_{n}<1+\frac{1}{2000} .
$$

A calculation shows that $N(1 / 2000)=2000$. That is

$$
n \in \mathbb{N}, \quad n>2000 \Rightarrow\left|s_{n}-1\right|<\frac{1}{2000}
$$

This is illustrated by the following table of approximate values:

n	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
s_{n}	0.999	1.001	0.999	1.001	1.000	1.000	1.000	1.000	1.000	1.000

Hence, even this more powerful calculator is fooled into thinking that $\left\{s_{n}\right\}$ is eventually constant.

In computer science the precision of a computer is measured by the number called the machine epsilon (also called macheps, machine precision or unit roundoff). It is the smallest number that gives a number greater than 1 when added to 1 .

Now, Definition 8.3 .6 can be paraphrased as: A sequence converges if on each computer it appears to be eventually constant. This is the reason why I think that instead of the phrase "a sequence is convergent" we could use the phrase "a sequence is constantish."

8.4. Finding $N(\epsilon)$ for a convergent sequence

Example 8.4.1. Prove that $\lim _{n \rightarrow \infty} \frac{2 n-1}{n+3}=2$.
Solution. We prove the given equality using Definition 8.3.6. To do that for each $\epsilon>0$ we have to find $N(\epsilon)$ such that

$$
\begin{equation*}
n \in \mathbb{N}, \quad n>N(\epsilon) \quad \Rightarrow \quad\left|\frac{2 n-1}{n+3}-2\right|<\epsilon \tag{8.4.1}
\end{equation*}
$$

Let $\epsilon>0$ be given. We can think of n as an unknown in $\left|\frac{2 n-1}{n+3}-2\right|<\epsilon$ and solve this inequality for n. To this end first simplify the left-hand side:

$$
\begin{equation*}
\left|\frac{2 n-1}{n+3}-2\right|=\left|\frac{2 n-1-2 n-6}{n+3}\right|=\frac{|-7|}{|n+3|}=\frac{7}{n+3} \tag{8.4.2}
\end{equation*}
$$

Now, $\frac{7}{n+3}<\epsilon$ is much easier to solve for $n \in \mathbb{N}$:

$$
\begin{equation*}
\frac{7}{n+3}<\epsilon \Leftrightarrow \frac{n+3}{7}>\frac{1}{\epsilon} \Leftrightarrow n+3>\frac{7}{\epsilon} \Leftrightarrow n>\frac{7}{\epsilon}-3 . \tag{8.4.3}
\end{equation*}
$$

Now (8.4.3) indicates that we can choose $N(\epsilon)=\frac{7}{\epsilon}-3$.
Now we have $N(\epsilon)$, but to complete the formal proof, we have to prove implication (8.4.1). The proof follows. Let $n \in \mathbb{N}$ and $n>\frac{7}{\epsilon}-3$. Then the equivalences in
(8.4.3) imply that $\frac{7}{n+3}<\epsilon$. Since by (8.4.3), $\left|\frac{2 n-1}{n+3}-2\right|=\frac{7}{n+3}$, it follows that $\left|\frac{2 n-1}{n+3}-2\right|<\epsilon$. This completes the proof of implication (8.4.1).

REMARK 8.4.2. This remark is essential for the understanding of the process described in the following examples. In the solution of Example 8.4.1 we found (in some sense) the smallest possible $N(\epsilon)$. It is important to notice that implication (8.4.1) holds with any larger value for " $N(\epsilon)$." For example, implication (8.4.1) holds if we set $N(\epsilon)=\frac{7}{\epsilon}$. With this new $N(\epsilon)$ we can prove implication (8.4.1) as follows. Let $n \in \mathbb{N}$ and $n>\frac{7}{\epsilon}$. Then $\frac{7}{n}<\epsilon$. Since clearly $\frac{7}{n+3}<\frac{7}{n}$, the last two inequalities imply that $\frac{7}{n+3}<\epsilon$ and we can continue with the same proof as in the solution of Example 8.4.1.
Example 8.4.3. Prove that $\lim _{n \rightarrow \infty} \frac{1}{n^{3}-n+1}=0$.
Solution. We prove the given equality using Definition 8.3.6. To do that for each $\epsilon>0$ we have to find $N(\epsilon)$ such that

$$
\begin{equation*}
n \in \mathbb{N}, \quad n>N(\epsilon) \quad \Rightarrow \quad\left|\frac{1}{n^{3}-n+1}-0\right|<\epsilon \tag{8.4.4}
\end{equation*}
$$

Let $\epsilon>0$ be given. We can think of n as an unknown in $\left|\frac{1}{n^{3}-n+1}-0\right|<\epsilon$ and solve this inequality for n. To this end first simplify the left-hand side:

$$
\begin{equation*}
\left|\frac{1}{n^{3}-n+1}-0\right|=\left|\frac{1}{n^{3}-n+1}\right|=\frac{|1|}{\left|n^{3}-n+1\right|}=\frac{1}{n^{3}-n+1} \tag{8.4.5}
\end{equation*}
$$

Unfortunately $\frac{1}{n^{3}-n+1}<\epsilon$ is not easy to solve for $n \in \mathbb{N}$. Therefore we use the idea from Remark 8.4.2 and replace the quantity $\frac{1}{n^{3}-n+1}$ with a larger quantity. To make a fraction larger we have to make the denominator smaller. Notice that $n^{2}-n=n(n-1) \geq n-1$ for all $n \in \mathbb{N}$. Therefore for all $n \in \mathbb{N}$ we have

$$
n^{3}-n+1=n^{3}-(n-1) \geq n^{3}-n(n-1)=n\left(n^{2}-n+1\right) \geq n
$$

Consequently,

$$
\begin{equation*}
\frac{1}{n^{3}-n+1} \leq \frac{1}{n} \tag{8.4.6}
\end{equation*}
$$

Now, $\frac{1}{n}<\epsilon$ is truly easy to solve for $n \in \mathbb{N}$:

$$
\begin{equation*}
\frac{1}{n}<\epsilon \quad \Leftrightarrow \quad n>\frac{1}{\epsilon} \tag{8.4.7}
\end{equation*}
$$

Hence we set $N(\epsilon)=\frac{1}{\epsilon}$.
Now we have $N(\epsilon)$, but to complete the formal proof, we have to prove implication (8.4.4). The proof follows. Let $n \in \mathbb{N}$ and $n>\frac{1}{\epsilon}$. Then the equivalence in (8.4.7) implies that $\frac{1}{n}<\epsilon$. By (8.4.6), $\frac{1}{n^{3}-n+1} \leq \frac{1}{n}$. The last two inequalities yield that $\frac{1}{n^{3}-n+1}<\epsilon$. By (8.4.5) it follows that $\left|\frac{1}{n^{3}-n+1}-0\right|<\epsilon$. This completes the proof of implication (8.4.4).

Example 8.4.4. Prove that $\lim _{n \rightarrow \infty} \frac{n^{2}-1}{n^{2}-2 n+2}=1$.

Solution. We prove the given equality using Definition 8.3.6. To do that for each $\epsilon>0$ we have to find $N(\epsilon)$ such that

$$
\begin{equation*}
n \in \mathbb{N}, \quad n>N(\epsilon) \quad \Rightarrow \quad\left|\frac{n^{2}-1}{n^{2}-2 n+2}-1\right|<\epsilon \tag{8.4.8}
\end{equation*}
$$

Let $\epsilon>0$ be given. We can think of n as an unknown in $\left|\frac{n^{2}-1}{n^{2}-2 n+2}-1\right|<\epsilon$ and solve this inequality for n. To this end first simplify the left-hand side:

$$
\begin{equation*}
\left|\frac{n^{2}-1}{n^{2}-2 n+2}-1\right|=\left|\frac{n^{2}-1-n^{2}+2 n-2}{n^{2}-2 n+2}\right|=\frac{|2 n-3|}{n^{2}-2 n+2} \tag{8.4.9}
\end{equation*}
$$

Unfortunately $\frac{|2 n-3|}{n^{2}-2 n+2}<\epsilon$ is not easy to solve for $n \in \mathbb{N}$. Therefore we use the idea from Remark 8.4.2 and replace the quantity $\frac{|2 n-3|}{n^{2}-2 n+2}$ with a larger quantity. Here is one way to discover a desired inequality. We first notice that for all $n \in \mathbb{N}$ the following two inequalities hold

$$
\begin{equation*}
|2 n-3| \leq 2 n \tag{8.4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
n^{2}-2 n+2=\frac{n^{2}}{2}+\frac{1}{2}\left(n^{2}-4 n+4\right)=\frac{n^{2}}{2}+\frac{1}{2}(n-2)^{2} \geq \frac{n^{2}}{2} \tag{8.4.11}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\frac{|2 n-3|}{n^{2}-2 n+2} \leq \frac{2 n}{n^{2} / 2}=\frac{4}{n} \tag{8.4.12}
\end{equation*}
$$

Now, $\frac{4}{n}<\epsilon$ is truly easy to solve for $n \in \mathbb{N}$:

$$
\begin{equation*}
\frac{4}{n}<\epsilon \quad \Leftrightarrow \quad n>\frac{4}{\epsilon} \tag{8.4.13}
\end{equation*}
$$

Hence we set $N(\epsilon)=\frac{4}{\epsilon}$.
Finally we have $N(\epsilon)$. But to complete the formal proof we have to prove implication (8.4.8). The proof follows. Let $n \in \mathbb{N}$ and $n>\frac{4}{\epsilon}$. Then the equivalence in (8.4.13) implies $\frac{4}{n}<\epsilon$. By (8.4.12), $\frac{|2 n-3|}{n^{2}-2 n+2} \leq \frac{4}{n}$. The last two inequalities yield $\frac{|2 n-3|}{n^{2}-2 n+2}<\epsilon$. By (8.4.9) it follows that $\left|\frac{n^{2}-1}{n^{2}-2 n+2}-1\right|<\epsilon$. This completes the proof of implication (8.4.8).

REMARK 8.4.5. For most sequences $\left\{s_{n}\right\}$ a proof of $\lim _{n \rightarrow \infty} s_{n}=L$ based on Definition 8.3.6 should consist from the following steps.
(1) Use algebra to simplify the expression $\left|s_{n}-L\right|$. It is desirable to eliminate the absolute value.
(2) Discover an inequality of the form

$$
\begin{equation*}
\left|s_{n}-L\right| \leq b(n) \quad \text { valid for all } \quad n \in \mathbb{N} \tag{8.4.14}
\end{equation*}
$$

Here $b(n)$ should be a simple function with the following properties:
(a) $b(n)>0$ for all $n \in \mathbb{N}$.
(b) $\lim _{n \rightarrow \infty} b(n)=0$. (Just check this property "mentally.")
(c) $b(n)<\epsilon$ is easily solvable for n for every $\epsilon>0$. The solution should be of the form " $n>$ some expression involving ϵ, call it $N(\epsilon)$."
(3) Use inequality (8.4.14) to prove the implication $n \in \mathbb{N}, n>N(\epsilon) \Rightarrow$ $\left|s_{n}-L\right|<\epsilon$.

ExErcise 8.4.6. Determine the limits (if they exist) of the sequences (e), (f), (g), (h), (i), and (n) in Example 8.1.4. Prove your claims.

ExERCISE 8.4.7. Determine whether the sequence $\left\{\frac{3 n+1}{7 n-4}\right\}_{n=1}^{\infty}$ converges and, if it converges, give its limit. Provide a formal proof.

ExERCISE 8.4.8. Determine the limits (if they exist) of the sequences in Example 8.1.5. Prove your claims.

8.5. Two standard sequences

Exercise 8.5.1. Let $a \in \mathbb{R}$ be such that $-1<a<1$.
(a) Prove that for all $n \in \mathbb{N}$ we have

$$
|a|^{n} \leq \frac{1}{n(1-|a|)}
$$

(b) Prove that

$$
\lim _{n \rightarrow \infty} a^{n}=0
$$

Exercise 8.5.2. Let a be a positive real number. Prove that

$$
\lim _{n \rightarrow \infty} a^{1 / n}=1
$$

Solution. Let $a>0$. If $a=1$, then $a^{1 / n}=1$ for all $n \in \mathbb{N}$. Therefore $\lim _{n \rightarrow \infty} a^{1 / n}=1$.

Assume $a>1$. Then $a^{1 / n}>1$. We shall prove that

$$
\begin{equation*}
a^{1 / n}-1 \leq a \frac{1}{n} \quad(\forall n \in \mathbb{N}) \tag{8.5.1}
\end{equation*}
$$

Put $x=a^{1 / n}-1>0$. Then, by Bernoulli's inequality we get

$$
a=(1+x)^{n} \geq 1+n x
$$

Consequently, solving for x we get that $x=a^{1 / n}-1 \leq(a-1) / n$. Since $a-1<a$, (8.5.1) follows.

Assume $0<a<1$. Then $1 / a>1$. Therefore, by already proved (8.5.1), we have

$$
\left(\frac{1}{a}\right)^{1 / n}-1 \leq \frac{1}{a} \frac{1}{n} \quad(\forall n \in \mathbb{N})
$$

Since $(1 / a)^{1 / n}=1 /\left(a^{1 / n}\right)$, simplifying the last inequality, together with the inequality $a^{1 / n}<1$, yields

$$
\begin{equation*}
1-a^{1 / n} \leq \frac{a^{1 / n}}{a} \frac{1}{n} \leq \frac{1}{a} \frac{1}{n} \quad(\forall n \in \mathbb{N}) \tag{8.5.2}
\end{equation*}
$$

As $a<a+1 / a$ and $1 / a<a+1 / a$, the inequalities (8.5.1) and (8.5.2) imply

$$
\begin{equation*}
\left|a^{1 / n}-1\right| \leq\left(a+\frac{1}{a}\right) \frac{1}{n} \quad(\forall n \in \mathbb{N}) \tag{8.5.3}
\end{equation*}
$$

Let $\epsilon>0$ be given. Solving $(a+1 / a) \frac{1}{n}<\epsilon$ for n, reveals $N(\epsilon)$:

$$
N(\epsilon)=\left(a+\frac{1}{a}\right) \frac{1}{\epsilon}
$$

Now it is easy to prove the implication (Do it as an exercise!)

$$
n \in \mathbb{N}, \quad n>\left(a+\frac{1}{a}\right) \frac{1}{\epsilon} \Rightarrow\left|a^{1 / n}-1\right|<\epsilon .
$$

8.6. Non-convergent sequences

Exercise 8.6.1. Prove that the sequence (d) in Example 8.1.4 does not converge. Use Remark 8.3.7 and Exercise 8.3.8

ExErcise 8.6.2. (Prove or Disprove) If $\left\{s_{n}\right\}$ does not converge to L, then there exist $\epsilon>0$ and $N(\epsilon)$ such that $\left|s_{n}-L\right| \geq \epsilon$ for all $n \geq N(\epsilon)$.

8.7. Convergence and boundedness

Exercise 8.7.1. Consider the following two statements:
(A) The sequence $\left\{s_{n}\right\}$ is bounded.
(B) The sequence $\left\{s_{n}\right\}$ converges.

Is $(A) \Rightarrow(B)$ true or false? Is $(B) \Rightarrow(A)$ true or false? Justify your answers.

8.8. Algebra of limits of convergent sequences

Exercise 8.8.1. Let $\left\{s_{n}\right\}$ be a sequence in \mathbb{R} and let $L \in \mathbb{R}$. Set $t_{n}=s_{n}-L$ for all $n \in \mathbb{N}$.

Prove that $\left\{s_{n}\right\}$ converges to L if and only if $\left\{t_{n}\right\}$ converges to 0 .
ExErcise 8.8.2. Let $c \in \mathbb{R}$. If $\lim _{n \rightarrow \infty} x_{n}=X$ and $z_{n}=c x_{n}$ for all $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} z_{n}=c X$.

Exercise 8.8.3. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in \mathbb{R}. Assume
(a) $\left\{x_{n}\right\}$ converges to 0 ,
(b) $\left\{y_{n}\right\}$ is bounded,
(c) $z_{n}=x_{n} y_{n}$ for all $n \in \mathbb{N}$.

Prove that $\left\{z_{n}\right\}$ converges to 0 .
Exercise 8.8.4. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in \mathbb{R}. Assume
(a) $\lim _{n \rightarrow \infty} x_{n}=X$,
(b) $\lim _{n \rightarrow \infty} y_{n}=Y$,
(c) $z_{n}=x_{n}+y_{n}$ for all $n \in \mathbb{N}$.

Prove that $\lim _{n \rightarrow \infty} z_{n}=X+Y$.
Exercise 8.8.5. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in \mathbb{R}. Assume
(a) $\lim _{n \rightarrow \infty} x_{n}=X$,
(b) $\lim _{n \rightarrow \infty} y_{n}=Y$,
(c) $z_{n}=x_{n} y_{n}$ for all $n \in \mathbb{N}$.

Prove that $\lim _{n \rightarrow \infty} z_{n}=X Y$.

ExERCISE 8.8.6. If $\lim _{n \rightarrow \infty} x_{n}=X$ and $X>0$, then there exists a real number N such that $n \geq N$ implies $x_{n} \geq X / 2$.

Exercise 8.8.7. Let $\left\{x_{n}\right\}$ be a sequence in \mathbb{R}. Assume
(a) $x_{n} \neq 0$ for all $n \in \mathbb{N}$,
(b) $\lim _{n \rightarrow \infty} x_{n}=X$,
(c) $X>0$,
(d) $w_{n}=\frac{1}{x_{n}}$ for all $n \in \mathbb{N}$.

Prove that $\lim _{n \rightarrow \infty} w_{n}=\frac{1}{X}$.
Exercise 8.8.8. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in \mathbb{R}. Assume
(a) $x_{n} \neq 0$ for all $n \in \mathbb{N}$,
(b) $\lim _{n \rightarrow \infty} x_{n}=X$,
(c) $\lim _{n \rightarrow \infty} y_{n}=Y$,
(d) $X \neq 0$,
(e) $z_{n}=\frac{y_{n}}{x_{n}}$ for all $n \in \mathbb{N}$.

Prove that $\lim _{n \rightarrow \infty} z_{n}=\frac{Y}{X}$. (Hint: Use previous exercises.)
EXERCISE 8.8.9. Prove that $\lim _{n \rightarrow \infty} \frac{2 n^{2}+n-5}{n^{2}+2 n+2}=\quad$ (insert correct value) by using the results we have proved (Exercises 8.8.2, 8.8.4, 8.8.5, 8.8.7, 8.8.8) and a small trick. You may use Definition 8.3.6 of convergence directly in this problem only to evaluate limit of the special form $\lim _{n \rightarrow \infty} \frac{1}{n}$.

REmARK 8.8.10. The point of Exercise 8.8.9 is to see that the general properties of limits (Exercises 8.8.2, 8.8.4, 8.8.5, 8.8.7, 8.8.8) can be used to reduce complicated situations to a few simple ones, so that when the few simple ones have been done it is no longer necessary to go back to Definition 8.3 .6 of convergence every time.

8.9. Convergent sequences and the order in \mathbb{R}

Exercise 8.9.1. Let $\left\{s_{n}\right\}$ be a sequence in \mathbb{R}. Assume
(a) $\lim _{n \rightarrow \infty} s_{n}=L$.
(b) There exists a real number N_{0} such that $s_{n} \geq 0$ for all $n \in \mathbb{N}$ such that $n>N_{0}$.
Prove that $L \geq 0$.
Exercise 8.9.2. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences in \mathbb{R}. Assume
(a) $\lim _{n \rightarrow \infty} a_{n}=K$.
(b) $\lim _{n \rightarrow \infty} b_{n}=L$.
(c) There exists a real number N_{0} such that $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ such that $n>N_{0}$.
Prove that $K \leq L$.
Exercise 8.9.3. Is the following refinement of Exercise 8.9.1 true? If $\left\{s_{n}\right\}$ converges to L and if $s_{n}>0$ for all $n \in \mathbb{N}$, then $L>0$.

Exercise 8.9.4. Let $\left\{x_{n}\right\}$ be a sequence in \mathbb{R}. Assume
(a) $x_{n} \geq 0$ for all $n \in \mathbb{N}$,
(b) $\lim _{n \rightarrow \infty} x_{n}=X$,
(c) $w_{n}=\sqrt{x_{n}}$ for all $n \in \mathbb{N}$.

Prove that $\lim _{n \rightarrow \infty} w_{n}=\sqrt{X}$.
Exercise 8.9.5. There are three sequences in this exercise: $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{s_{n}\right\}$. Assume the following
(a) The sequence $\left\{a_{n}\right\}$ converges to L.
(b) The sequence $\left\{b_{n}\right\}$ converges to L.
(c) There exists a real number n_{0} such that

$$
a_{n} \leq s_{n} \leq b_{n} \quad \text { for all } n \in \mathbb{N}, n>n_{0}
$$

Prove that $\left\{s_{n}\right\}$ converges to L.
ExErcise 8.9.6. (1) Let $x \geq 0$ and $n \in \mathbb{N}$. Prove the inequality

$$
(1+x)^{n} \geq 1+n x+\frac{n(n-1)}{2} x^{2}
$$

(2) Prove that for all $n \in \mathbb{N}$ we have $1 \leq n^{1 / n} \leq 1+\frac{2}{\sqrt{n}}$.

Hint: Apply the inequality proved in (1) to $(1+2 / \sqrt{n})^{n}$.
(3) Prove that the sequence $\left\{n^{1 / n}\right\}$ converges and determine its limit.

Exercise 8.9.7. (1) Prove that $(n!)^{2} \geq n^{n}$ for all $n \in \mathbb{N}$. Hint: Write

$$
(n!)^{2}=(1 \cdot n)(2 \cdot(n-1)) \cdots((n-1) \cdot 2)(n \cdot 1)=\prod_{k=1}^{n} k(n-k+1)
$$

Then prove $k(n-k+1) \geq n$ for all $k=1, \ldots, n$.
(2) Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{(n!)^{1 / n}}=0
$$

8.10. The monotonic convergence theorem

Definition 8.10.1. A sequence $\left\{s_{n}\right\}$ of real numbers is said to be non-decreasing if $s_{n} \leq s_{n+1}$ for all $n \in \mathbb{N}$, strictly increasing if $s_{n}<s_{n+1}$ for all $n \in \mathbb{N}$, nonincreasing if $s_{n} \geq s_{n+1}$ for all $n \in \mathbb{N}$, strictly decreasing if $s_{n}>s_{n+1}$ for all $n \in \mathbb{N}$. A sequence with any of these properties is said to be monotonic.

Exercise 8.10.2. Again a huge task here. Which of the sequences in Examples 8.1.4, 8.1.5, and 8.1.6 are monotonic? Find few monotonic ones in each example. Provide rigorous proofs.

Exercise 8.10.3. (Prove or Disprove) If $\left\{x_{n}\right\}$ is non-increasing, then $\left\{x_{n}\right\}$ converges.

The following two exercises give powerful tools for establishing convergence of a sequence.

ExErcise 8.10.4. If $\left\{s_{n}\right\}$ is non-increasing and bounded below, then $\left\{s_{n}\right\}$ converges.

ExERCISE 8.10.5. If $\left\{s_{n}\right\}$ is non-decreasing and bounded above, then $\left\{s_{n}\right\}$ converges.

Proof. Assume that the sequence $\left\{s_{n}\right\}$ is non-decreasing and bounded above. Consider the range of the sequence $\left\{s_{n}\right\}$. That is consider the set

$$
A=\left\{s_{n}: n \in \mathbb{N}\right\} .
$$

The set A is nonempty and bounded above. Therefore $\sup A$ exists. Put $L=\sup A$.
We will prove that $s_{n} \rightarrow L(n \rightarrow \infty)$. Let $\epsilon>0$ be arbitrary. Since $L=\sup A$ we have
(1) $L \geq s_{n}$ for all $n \in \mathbb{N}$.
(2) There exists $a_{\epsilon} \in A$ such that $L-\epsilon<a_{\epsilon}$.

Since $a_{\epsilon} \in A$, there exists $N_{\epsilon} \in \mathbb{N}$ such that $a_{\epsilon}=s_{N_{\epsilon}}$. It remains to prove that

$$
\begin{equation*}
n \in \mathbb{N}, \quad n>N_{\epsilon} \Rightarrow\left|s_{n}-L\right|<\epsilon . \tag{8.10.1}
\end{equation*}
$$

Let $n \in \mathbb{N}, n>N_{\epsilon}$ be arbitrary. Since we assume that $\left\{s_{n}\right\}$ is non-decreasing, it follows that $s_{n} \geq s_{N_{\epsilon}}$. Since $L-\epsilon<a_{\epsilon}=s_{N_{\epsilon}} \leq s_{n}$, we conclude that $L-s_{n}<\epsilon$. Since $L \geq s_{n}$, we have $\left|s_{n}-L\right|=L-s_{n}<\epsilon$. The implication (8.10.1) is proved.

Exercise 8.10.6. There is a huge task here. Consider the sequences given in Example 8.1.6. Prove that each of these sequences converges and determine its limit.

8.11. Two important sequences with the same limit

In this section we study the sequences defined in (8.1.3) and (8.1.5).

$$
\begin{aligned}
& E_{n}=\left(1+\frac{1}{n}\right)^{n}, \quad n \in \mathbb{N} \\
& S_{1}=2 \text { and }(\forall n \in \mathbb{N}) \quad S_{n+1}=S_{n}+\frac{1}{(n+1)!}
\end{aligned}
$$

Exercise 8.11.1. Prove by mathematical induction that $S_{n} \leq 3-1 / n$ for all $n \in \mathbb{N}$.

Exercise 8.11.2. Prove that the sequence $\left\{S_{n}\right\}$ converges.
ExErcise 8.11.3. Let $n, k \in \mathbb{N}$ and $n \geq k$. Use Bernoulli's inequality to prove that

$$
\frac{n!}{(n-k)!n^{k}} \geq 1-\frac{(k-1) k}{n}
$$

Hint: Notice that

$$
\frac{n!}{n^{k}(n-k)!}=1 \cdot\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right) \geq\left(1-\frac{k-1}{n}\right)^{k}
$$

Exercise 8.11.4. The following inequalities hold: $E_{1}=S_{1}$ and for all integers n greater than 1,

$$
\begin{equation*}
S_{n}-\frac{3}{n}<E_{n}<S_{n} \tag{8.11.1}
\end{equation*}
$$

Hint: Let n be an integer greater than 2. Notice that by the Binomial Theorem

$$
E_{n}=\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \frac{1}{n^{k}}=1+1+\sum_{k=2}^{n} \frac{n!}{(n-k)!n^{k}} \frac{1}{k!}
$$

Then use Exercise 8.11.3 to prove $E_{n}>S_{n}-S_{n-2} / n$. Then use Exercise 8.11.1.
Exercise 8.11.5. The sequences $\left\{E_{n}\right\}$ and $\left\{S_{n}\right\}$ converge to the same limit.
Exercise 8.11.5 justifies the following definition.
Definition 8.11.6. The number e is the common limit of the sequences $\left\{E_{n}\right\}$ and $\left\{S_{n}\right\}$.

Remark 8.11.7. The sequence $\left\{E_{n}\right\}$ is increasing. To prove this claim let $n \in \mathbb{N}$ be arbitrary. Consider the fraction

$$
\begin{align*}
\frac{E_{n+1}}{E_{n}} & =\frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{\left(1+\frac{1}{n}\right)^{n}}=\frac{n+1}{n} \frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{\left(1+\frac{1}{n}\right)^{n+1}}=\frac{n+1}{n}\left(\frac{\frac{n+2}{n+1}}{\frac{n+1}{n}}\right)^{n+1} \tag{8.11.2}\\
& =\frac{n+1}{n}\left(\frac{n(n+2)}{(n+1)^{2}}\right)^{n+1}=\frac{n+1}{n}\left(1-\frac{1}{(n+1)^{2}}\right)^{n+1}
\end{align*}
$$

Since $-\frac{1}{(n+1)^{2}}>-1$ for all $n \in \mathbb{N}$, applying Bernoulli's Inequality with $x=-\frac{1}{(n+1)^{2}}$ we get

$$
\begin{equation*}
\left(1-\frac{1}{(n+1)^{2}}\right)^{n+1}>1-(n+1) \frac{1}{(n+1)^{2}}=1-\frac{1}{n+1} \tag{8.11.3}
\end{equation*}
$$

The relations (8.11.2) and (8.11.3) imply

$$
\frac{E_{n+1}}{E_{n}}=\frac{n+1}{n}\left(1-\frac{1}{(n+1)^{2}}\right)^{n+1}>\frac{n+1}{n}\left(1-\frac{1}{n+1}\right)=1
$$

Thus

$$
\frac{E_{n+1}}{E_{n}}>1 \quad \text { for all } \quad n \in \mathbb{N}
$$

that is the sequence $\left\{E_{n}\right\}$ is increasing.

8.12. Subsequences

Composing functions is a common way how functions interact with each other. Can we compose two sequences? Let $x: \mathbb{N} \rightarrow \mathbb{R}$ and $y: \mathbb{N} \rightarrow \mathbb{R}$ be two sequences. Does the composition $x \circ y$ make sense? This composition makes sense only if the range of y is contained in \mathbb{N}. In this case $y: \mathbb{N} \rightarrow \mathbb{N}$. That is the composition $x \circ y$ makes sense only if y is a sequence in \mathbb{N}. It turns out that the most important composition of sequences involve increasing sequences in \mathbb{N}. In this section the Greek letters μ and ν will always denote increasing sequences of natural numbers.

Definition 8.12.1. A subsequence of a sequence $\left\{x_{n}\right\}$ is a composition of the sequence $\left\{x_{n}\right\}$ and an increasing sequence $\left\{\mu_{k}\right\}$ of natural numbers. This composition will be denoted by $\left\{x_{\mu_{k}}\right\}$ or $\left\{x\left(\mu_{k}\right)\right\}$.

REMARK 8.12.2. The concept of subsequence consists of two ingredients:

- the sequence $\left\{x_{n}\right\}$ (remember it's really a function: $x: \mathbb{N} \rightarrow \mathbb{R}$)
- the increasing sequence $\left\{\mu_{k}\right\}$ of natural numbers (remember this is an increasing function: $\mu: \mathbb{N} \rightarrow \mathbb{N}$).
The composition $x \circ \mu$ of these two sequences is a new sequence $y: \mathbb{N} \rightarrow \mathbb{R}$. The k-th term y_{k} of this sequence is $y_{k}=x_{\mu_{k}}$. Note the analogy with the usual notation for functions: $y(k)=x(\mu(k))$. Usually we will not introduce the new name for a subsequence: we will write $\left\{x_{\mu_{k}}\right\}_{k=1}^{\infty}$ to denote a subsequence of the sequence $\left\{x_{n}\right\}$. Here $\left\{\mu_{k}\right\}_{k=1}^{\infty}$ is and increasing sequence of natural numbers which selects particular elements of the sequence $\left\{x_{n}\right\}$ to be included in the subsequence.

REmark 8.12.3. Roughly speaking, a subsequence of $\left\{x_{n}\right\}$ is a sequence formed by selecting some of the terms in $\left\{x_{n}\right\}$, keeping them in the same order as in the original sequence. It is the sequence $\left\{\mu_{k}\right\}$ of positive integers that does the selecting.

Example 8.12.4. Few examples of increasing sequences in \mathbb{N} are:
(a) $\mu_{k}=2 k, \quad k \in \mathbb{N}$. (The sequence of even positive integers.)
(b) $\nu_{k}=2 k-1, \quad k \in \mathbb{N}$. (The sequence of odd positive integers.)
(c) $\mu_{k}=k^{2}, \quad k \in \mathbb{N}$. (The sequence of perfect squares.)
(d) Let j be a fixed positive integer. Set $\nu_{k}=j+k$ for all $k \in \mathbb{N}$.
(e) The sequence $2,3,5,7,11,13,17, \ldots$ of prime numbers. For this sequence no formula for $\left\{\mu_{k}\right\}$ is known.
Exercise 8.12.5. Let $\left\{\mu_{n}\right\}$ be an increasing sequence in \mathbb{N}. Prove that $\mu_{n} \geq n$ for all $n \in \mathbb{N}$.

EXERCISE 8.12.6. Each subsequence of a convergent sequence is convergent with the same limit.

REMARK 8.12.7. The "contrapositive" of Exercise 8.12.6 is a powerful tool for proving that a given sequence does not converge. As an illustration prove that the sequence $\left\{(-1)^{n}\right\}$ does not converge in two different ways: using the definition of convergence and using the "contrapositive" of Exercise 8.12.6.

Exercise 8.12.8 (The Zipper Theorem). Let $\left\{x_{n}\right\}$ be a sequence in \mathbb{R} and let $\left\{\mu_{k}\right\}$ and $\left\{\nu_{k}\right\}$ be increasing sequences in \mathbb{N}. Assume
(a) $\left\{\mu_{k}: k \in \mathbb{N}\right\} \cup\left\{\nu_{k}: k \in \mathbb{N}\right\}=\mathbb{N}$.
(b) $\left\{x_{\mu_{k}}\right\}$ converges to L.
(c) $\left\{x_{\nu_{k}}\right\}$ converges to L.

Prove that $\left\{x_{n}\right\}$ converges to L.
Example 8.12.9. The sequence (o) in Example 8.1.4 does not converge, but it does have convergent subsequences, for instance the subsequence $\left\{\frac{2 k}{2 k+1}\right\}_{k=1}^{\infty}$ (Here $\mu_{k}=2 k, k \in \mathbb{N}$) and the subsequence $\left\{\frac{1}{(2 k-1) 2 k}\right\}_{k=1}^{\infty}\left(\right.$ Here $\nu_{k}=2 k-$ $1, k \in \mathbb{N})$.

Remark 8.12.10. The notation for subsequences is a little tricky at first. Note that in $x_{\mu_{k}}$ it is k that is the variable. Thus the successive elements of the subsequence are $x_{\mu_{1}}, x_{\mu_{2}}, x_{\mu_{3}}$, etc. To indicate a different subsequence of the same sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ it would be necessary to change not the variable name, but
the selection sequence. For example $\left\{x_{\mu_{k}}\right\}_{k=1}^{\infty}$ and $\left\{x_{\nu_{k}}\right\}_{k=1}^{\infty}$ in Example 8.12.9 are distinct subsequences of $\left\{x_{n}\right\}$. (Thus $\left\{x_{\mu_{k}}\right\}_{k=1}^{\infty}$ and $\left\{x_{\mu_{j}}\right\}_{j=1}^{\infty}$ are the same subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ for exactly the same reason that $x \mapsto x^{2}(x \in \mathbb{R})$ and $t \mapsto t^{2}(t \in \mathbb{R})$ are the same function. To make a different function it's the rule you must change, not the variable name.)

Example 8.12.11. Let $\left\{x_{n}\right\}$ be the sequence defined by

$$
x_{n}=\frac{(-1)^{n}(n+1)^{(-1)^{n}}}{n}, \quad n \in \mathbb{N}
$$

The values of $\left\{x_{n}\right\}$ are

$$
-\frac{1}{1 \cdot 2}, \frac{3}{2},-\frac{1}{3 \cdot 4}, \frac{5}{4},-\frac{1}{5 \cdot 6}, \frac{7}{6},-\frac{1}{7 \cdot 8}, \frac{9}{8},-\frac{1}{9 \cdot 10}, \frac{11}{10}, \ldots
$$

ExERCISE 8.12.12. Every sequence has a monotonic subsequence.
Hint: Let $\left\{x_{n}\right\}$ be an arbitrary sequence. Consider the set

$$
\mathbb{M}=\left\{n \in \mathbb{N}: \forall k>n \text { we have } x_{k} \geq x_{n}\right\}
$$

The set \mathbb{M} is either finite or infinite. Construct a monotonic subsequence in each case.

Exercise 8.12.13. Every bounded sequence of real numbers has a convergent subsequence.

ExERCISE 8.12 .14 (Sequential characterization of compactness). Let F be a subset of \mathbb{R}. Prove that F is compact if and only if every sequence in K has a subsequence which converges in K.

8.13. The Cauchy criterion

DEfinition 8.13.1. A sequence $\left\{s_{n}\right\}$ of real numbers is called a Cauchy sequence if for every $\epsilon>0$ there exists a real number N_{ϵ} such that

$$
\forall n, m \in \mathbb{N}, \quad n, m>N_{\epsilon} \Rightarrow\left|s_{n}-s_{m}\right|<\epsilon
$$

Exercise 8.13.2. Prove that every convergent sequence is a Cauchy sequence.
Exercise 8.13.3. Prove that every Cauchy sequence is bounded.
Exercise 8.13.4. If a Cauchy sequence has a convergent subsequence, then it converges.

Exercise 8.13.5. Prove that each Cauchy sequence has a convergent subsequence.

ExErcise 8.13.6. Prove that a sequence converges if and only if it is a Cauchy sequence.

8.14. Sequences and supremum and infimum

Exercise 8.14.1. Let $A \subset \mathbb{R}, A \neq \emptyset$ and assume that A is bounded above. Prove that $a=\sup A$ if and only if
(a) a is an upper bound of A, that is, $a \geq x$, for all $x \in A$;
(b) there exists a sequence $\left\{x_{n}\right\}$ such that

$$
x_{n} \in A \quad \text { for each } \quad n \in \mathbb{N} \quad \text { and } \quad \lim _{n \rightarrow \infty} x_{n}=a
$$

Exercise 8.14.2. Let $A \subset \mathbb{R}, A \neq \emptyset$ and assume that A is bounded above. Let $a=\sup A$ and assume that $a \notin A$. Prove that there exists a strictly increasing sequence $\left\{x_{n}\right\}$ such that

$$
x_{n} \in A \quad \text { for each } \quad n \in \mathbb{N} \quad \text { and } \quad \lim _{n \rightarrow \infty} x_{n}=a
$$

ExERCISE 8.14.3. State and prove the characterization of infimum which is analogous to the characterization of $\sup A$ given in Exercise 8.14.1.

Exercise 8.14.4. State and prove an exercise involving infimum of a set which is analogous to Exercise 8.14.2.

8.15. Limit inferior and limit superior

Consider the sequence $\left\{(-1)^{n} n /(n+1)\right\}$. This sequence does not have a limit. However, one can prove that the subsequence of even terms converges to 1 and the subsequence of odd terms converges to -1 . The concepts of the limit inferior and the limit superior capture this phenomenon for every bounded sequence.

Definition 8.15.1. Let $\left\{x_{n}\right\}$ be a bounded sequence. For $m \in \mathbb{N}$ let

$$
y_{m}=\inf \left\{x_{n}: n \geq m\right\} \quad \text { and } \quad z_{m}=\sup \left\{x_{n}: n \geq m\right\}
$$

The limit inferior of $\left\{x_{n}\right\}$, denoted by $\underline{l i m}_{n \rightarrow \infty} x_{n}$ or $\liminf _{n \rightarrow \infty} x_{n}$, is given by

$$
\varliminf_{n \rightarrow \infty} x_{n}=\sup \left\{y_{m}: m \in \mathbb{N}\right\} .
$$

The limit superior of $\left\{x_{n}\right\}$, denoted by $\varlimsup_{n \rightarrow \infty} x_{n}$ or $\limsup _{n \rightarrow \infty} x_{n}$, is given by

$$
\varlimsup_{n \rightarrow \infty} x_{n}=\inf \left\{z_{m}: m \in \mathbb{N}\right\}
$$

Exercise 8.15.2. Compute

$$
\varliminf_{n \rightarrow \infty} \frac{(-1)^{n} n}{n+1} \text { and } \varlimsup_{n \rightarrow \infty} \frac{(-1)^{n} n}{n+1}
$$

Rigorously justify your reasoning.
Exercise 8.15.3. Let $\left\{x_{n}\right\}$ be a bounded sequence. Prove that the sequences $\left\{y_{m}\right\}$ and $\left\{z_{m}\right\}$ from Definition 8.15 .1 converge and state their limits.

ExERCISE 8.15.4. Let $\left\{x_{n}\right\}$ be a bounded sequence. Explore the relationship between these four numbers

$$
\varliminf_{n \rightarrow \infty}^{\lim } x_{n}, \quad \varlimsup_{n \rightarrow \infty} x_{n}, \quad \underset{n \rightarrow \infty}{\lim }\left(-x_{n}\right), \quad \varlimsup_{n \rightarrow \infty}\left(-x_{n}\right) .
$$

ExERCISE 8.15.5. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be bounded sequences. Prove that

$$
\varlimsup_{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \varlimsup_{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}
$$

and

$$
\underline{\varliminf_{n \rightarrow \infty}}\left(a_{n}+b_{n}\right) \geq \underline{\lim }_{n \rightarrow \infty} a_{n}+\underline{\underline{\lim }}_{n \rightarrow \infty} b_{n} .
$$

Find an example for which the inequalities above are strict.

Exercise 8.15.6. Let $\left\{x_{n}\right\}$ be a bounded sequence. Let

$$
L_{1}=\underline{\lim }_{n \rightarrow \infty} x_{n} \quad \text { and } \quad L_{2}=\varlimsup_{n \rightarrow \infty} x_{n}
$$

Prove that for every $\epsilon>0$ there exists $N(\epsilon)$ such that

$$
n \in \mathbb{N}, \quad n>N(\epsilon) \quad \Rightarrow \quad x_{n} \in\left(L_{1}-\epsilon, L_{2}+\epsilon\right)
$$

Exercise 8.15.7. Let $\left\{x_{n}\right\}$ be a bounded sequence. Prove that $\left\{x_{n}\right\}$ converges if and only if

$$
\underline{\underline{\lim }} x_{n \rightarrow \infty}=\varlimsup_{n \rightarrow \infty} x_{n}
$$

CHAPTER 9

Continuous functions

In this chapter I will always denote a non-empty subset of \mathbb{R}. This includes more general sets, but the most common examples of I are intervals.

9.1. The $\epsilon-\delta$ definition of a continuous function

Definition 9.1.1. A function $f: I \rightarrow \mathbb{R}$ is continuous at a point $x_{0} \in I$ if for each $\epsilon>0$ there exists $\delta=\delta\left(\epsilon, x_{0}\right)>0$ such that

$$
\begin{equation*}
x \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap I \quad \Rightarrow \quad\left|f(x)-f\left(x_{0}\right)\right|<\epsilon . \tag{9.1.1}
\end{equation*}
$$

The function f is continuous on I if it is continuous at each point of I.
Note that the implication in (9.1.1) can be restated as

$$
x \in I \text { and }\left|x-x_{0}\right|<\delta\left(\epsilon, x_{0}\right) \quad \Rightarrow \quad\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

Next we restate Definition 9.1.1 using the terminology introduced in Section 7.1. For a function $f: I \rightarrow \mathbb{R}$ and a subset $A \subseteq I$ we will use the notation $f(A)$ to denote the set $\{y \in \mathbb{R}: \exists x \in A$ s.t. $f(x)=y\}=\{f(x): x \in A\}$.

A function $f: I \rightarrow \mathbb{R}$ is continuous at a point $x_{0} \in I$ if for each neighborhood V of $f\left(x_{0}\right)$ there exists a neighborhood U of x_{0} such that

$$
f(I \cap U) \subseteq V
$$

9.2. Finding $\delta(\epsilon)$ for a given function at a given point

In this and the next section we will prove that some familiar functions are continuous. This should be a review of what was done in Math 226.

A general strategy for proving that a given function f is continuous at a given point x_{0} is as follows:

Step 1: Simplify the expression $\left|f(x)-f\left(x_{0}\right)\right|$ and try to establish a simple connection with the expression $\left|x-x_{0}\right|$. The simplest connection is to discover positive constants δ_{0} and K such that

$$
\begin{equation*}
x \in I \text { and } x_{0}-\delta_{0}<x<x_{0}+\delta_{0} \quad \Rightarrow \quad\left|f(x)-f\left(x_{0}\right)\right| \leq K\left|x-x_{0}\right| \tag{9.2.1}
\end{equation*}
$$

Constants δ_{0} and K might depend on x_{0}. Formulate your discovery as a lemma.
Step 2: Let $\epsilon>0$ be given. Use the result in Step 1 to define your $\delta\left(\epsilon, x_{0}\right)$. For example, if (9.2.1) holds, then $\delta\left(\epsilon, x_{0}\right)=\min \left\{\epsilon / K, \delta_{0}\right\}$.
Step 3: Use the definition of $\delta\left(\epsilon, x_{0}\right)$ from Step 2 and the lemma from Step 1 to prove the implication (9.1.1).

Example 9.2.1. We will show that the function $f(x)=x^{2}$ is continuous at $x_{0}=3$. Here $I=\mathbb{R}$ and we do not need to worry about the domain of f.
Step 1. First simplify

$$
\begin{equation*}
\left|f(x)-f\left(x_{0}\right)\right|=\left|x^{2}-3^{2}\right|=|(x+3)(x-3)|=|x+3||x-3| \tag{9.2.2}
\end{equation*}
$$

Now we notice that if $2<x<4$ we have $|x+3|=x+3 \leq 7$. Thus (9.2.1) holds with $\delta_{0}=1$ and $K=7$. We formulate this result as a lemma.

Lemma. Let $f(x)=x^{2}$ and $x_{0}=3$. Then

$$
|x-3|<1 \quad \Rightarrow \quad\left|x^{2}-3^{2}\right|<7|x-3|
$$

Proof. Let $|x-3|<1$. Then $2<x<4$. Therefore $x+3>0$ and $|x+3|=$ $x+3<7$. By (9.2.2) we now have $\left|x^{2}-3^{2}\right|<7|x-3|$.

Step 2. Now we define $\delta(\epsilon)=\min \{\epsilon / 7,1\}$.
Step 3. It remains to prove (9.1.1). To this end, assume $|x-3|<\min \{\epsilon / 7,1\}$. Then $|x-3|<1$. Therefore, by Lemma we have $\left|x^{2}-3^{2}\right|<7|x-3|$. Since by the assumption $|x-3|<\epsilon / 7$, we have $7|x-3|<7 \epsilon / 7 \epsilon$. Now the inequalities

$$
\left|x^{2}-3^{2}\right|<7|x-3| \quad \text { and } \quad 7|x-3|<\epsilon
$$

imply that $\left|x^{2}-3^{2}\right|<\epsilon$. This proves (9.1.1) and completes the proof that the function $f(x)=x^{2}$ is continuous at $x_{0}=3$.

ExErcise 9.2.2. Prove that the reciprocal function $x \mapsto \frac{1}{x}, x \neq 0$, is continuous at $x_{0}=1 / 2$.

ExERCISE 9.2.3. State carefully what it means for a function f not to be continuous at a point x_{0} in its domain. (Express this as a formal mathematical statement.)

Exercise 9.2.4. Consider the function $f(x)=\operatorname{sgn} x$. Find a point x_{0} at which the function f is not continuous. Provide a formal proof.

ExERCISE 9.2.5. Show that the function $f(x)=x^{2}$ is continuous on \mathbb{R}.
Exercise 9.2.6. Prove that $q(x)=3 x^{2}+5$ is continuous on \mathbb{R}.

9.3. Familiar continuous functions

Exercise 9.3.1. Let $m, k \in \mathbb{R}$ and $m \neq 0$. Prove that the linear function $\ell(x)=m x+k$ is continuous on \mathbb{R}.

Exercise 9.3.2. Let $a, b, c \in \mathbb{R}$ and $a \neq 0$. Prove that the quadratic function $q(x)=a x^{2}+b x+c$ is continuous on \mathbb{R}.

Exercise 9.3.3. Let $n \in \mathbb{N}$ and let $x, x_{0} \in \mathbb{R}$ be such that $x_{0}-1 \leq x \leq x_{0}+1$. Prove the following inequality

$$
\left|x^{n}-x_{0}^{n}\right| \leq n\left(\left|x_{0}\right|+1\right)^{n-1}\left|x-x_{0}\right|
$$

Hint: First notice that the assumption $x_{0}-1 \leq x \leq x_{0}+1$ implies that $|x|<$ $\left|x_{0}\right|+1$. Then use the Mathematical Induction and the identity

$$
\left|x^{n+1}-x_{0}^{n+1}\right|=\left|x^{n+1}-x x_{0}^{n}+x x_{0}^{n}-x_{0}^{n+1}\right|
$$

Exercise 9.3.4. Let $n \in \mathbb{N}$. Prove that the power function $x \mapsto x^{n}, x \in \mathbb{R}$, is continuous on \mathbb{R}.

Exercise 9.3.5. Let $n \in \mathbb{N}$ and let $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$ with $a_{n} \neq 0$. Prove that the n-th order polynomial

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n}
$$

is a continuous function on \mathbb{R}.
EXERCISE 9.3.6. Prove that the reciprocal function $x \mapsto \frac{1}{x}, x \neq 0$, is continuous on its domain.

Exercise 9.3.7. Prove that the square root function $x \mapsto \sqrt{x}, x \geq 0$, is continuous on its domain.

ExErcise 9.3.8. Let $n \in \mathbb{N}$ and let x and a be positive real numbers. Prove that

$$
|\sqrt[n]{x}-\sqrt[n]{a}| \leq \frac{\sqrt[n]{a}}{a}|x-a|
$$

Hint: Notice that the given inequality is equivalent to

$$
b^{n-1}|y-b| \leq\left|y^{n}-b^{n}\right|, \quad y, b>0
$$

This inequality can be proved using Exercise 5.2.7 (with $a=1$ and $x=y / b$).
Exercise 9.3.9. Let $n \in \mathbb{N}$. Prove that the n-th root function $x \mapsto \sqrt[n]{x}, x \geq 0$, is continuous on its domain.

9.4. Various properties of continuous functions

ExErcise 9.4.1. Let $f: I \rightarrow \mathbb{R}$ be continuous at $x_{0} \in I$ and let y be a real number such that $f\left(x_{0}\right)<y$. Then there exists $\alpha>0$ such that

$$
x \in I \cap\left(x_{0}-\alpha, x_{0}+\alpha\right) \quad \Rightarrow \quad f(x)<y .
$$

Illustrate with a diagram.
ExErcise 9.4.2. Let $f: I \rightarrow \mathbb{R}$ be a continuous function on I. Let S be a non-empty bounded above subset of I such that $u=\sup S$ belongs to I. Let $y \in \mathbb{R}$. Prove: If $f(x) \leq y$ for each $x \in S$, then $f(u) \leq y$.

9.5. Algebra of continuous functions

All exercises in this section have the same structure. With the exception of Exercise 9.5.3, there are three functions in each exercise: f, g and h. The function h is always related in a simple (green) way to the functions f and g. Based on the given (green) information about f and g you are asked to prove a claim (red) about the function h.

ExErcise 9.5.1. Let $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be given functions with a common domain. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=f(x)+g(x), \quad x \in I
$$

(a) If f and g are continuous at $x_{0} \in I$, then h is continuous at x_{0}.
(b) If f and g are continuous on I, then h is continuous on I.

ExERCISE 9.5.2. Let $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be given functions with a common domain. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=f(x) g(x), \quad x \in I
$$

(a) If f and g are continuous at $x_{0} \in I$, then h is continuous at x_{0}.
(b) If f and g are continuous on I, then h is continuous on I.

ExERCISE 9.5.3. Let $g: I \rightarrow \mathbb{R}$ be a given functions such that $g(x) \neq 0$ for all $x \in I$. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=\frac{1}{g(x)}, \quad x \in I
$$

(a) If g is continuous at $x_{0} \in I$, then h is continuous at x_{0}.
(b) If g is continuous on I, then h is continuous on I.

ExERCISE 9.5.4. Let $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be given functions with a common domain. Assume that $g(x) \neq 0$ for all $x \in I$. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=\frac{f(x)}{g(x)}, \quad x \in I
$$

(a) If f and g are continuous at $x_{0} \in I$, then h is continuous at x_{0}.
(b) If f and g are continuous on I, then h is continuous on I.

ExERCISE 9.5.5. Let I and J be non-empty subsets of \mathbb{R}. Let $f: I \rightarrow \mathbb{R}$ and $g: J \rightarrow \mathbb{R}$ be given functions. Assume that the range of f is contained in J. Define the function $h: I \rightarrow \mathbb{R}$ by

$$
h(x)=g(f(x)), \quad x \in I
$$

(a) If f is continuous at $x_{0} \in I$ and g is continuous at $f\left(x_{0}\right) \in J$, then h is continuous at x_{0}.
(b) If f is continuous on I and g is continuous on J, then h is continuous on I.

9.6. Continuous functions on a closed bounded interval $[a, b]$

In this section we assume that $a, b \in \mathbb{R}$ and $a<b$.
ExErcise 9.6.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. If $f(a)<0$ and $f(b)>0$, then there exists $c \in[a, b]$ such that $f(c)=0$.

Hint: Consider the set

$$
W=\{w \in[a, b): \forall x \in[a, w] f(x)<0\} .
$$

Prove the following properties of W :
(i) W does not have a maximum.
(ii) W has a supremum. Set $w=\sup W$.
(iii) Review Exercise 9.4.2.
(iv) Connect the dots.

Exercise 9.6.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then there exists $c \in[a, b]$ such that $f(x) \leq f(c)$ for all $x \in[a, b]$.

Hint: Consider the set

$$
W=\{v \in[a, b): \exists z \in[a, b] \text { such that } \forall x \in[a, v] f(x)<f(z)\} .
$$

Here $[a, a]$ denotes the set $\{a\}$. Prove the following properties of the set W :
(i) If $a<u$ and $[a, u) \subseteq W$ and there exists $t \in[a, b]$ such that $f(t)>f(u)$, then $u \in W$.
(ii) W does not have a maximum.
(iii) W has a supremum. Set $w=\sup W$ and prove $[a, w) \subseteq W$.
(iv) The items (ii) and (iii) yield information about w.

ExErcise 9.6.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then there exists $d \in[a, b]$ such that $f(d) \leq f(x)$ for all $x \in[a, b]$.

Hint: Use Exercise 9.6.2.
ExERCISE 9.6.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then the range of f is a closed bounded interval.

Hint: Use Exercises 9.6.2, 9.6.3, and 9.6.1.
Exercise 9.6.5. Consider the function $f(x)=x^{2}, x \in \mathbb{R}$.
(a) Prove that 2 is in the range of f.
(b) Prove that the range of f equals $[0,+\infty)$.

Definition 9.6.6. A function f is increasing on an interval I if $x, y \in I$ and $x<y$ imply $f(x)<f(y)$. A function f is decreasing if $x, y \in I$ and $x<y$ imply $f(x)>f(y)$. A function which is increasing or decreasing is said to be strictly monotonic.

EXERCISE 9.6.7. If f is continuous and increasing on $[a, b]$ or continuous and decreasing on $[a, b]$, then for each y between $f(a)$ and $f(b)$ there is exactly one $x \in[a, b]$ such that $f(x)=y$.

ExERCISE 9.6.8. Let $f(x)=x^{3}+x, x \in \mathbb{R}$. Prove that f has an inverse. That is, prove that for each $y \in \mathbb{R}$ there exists unique $x \in \mathbb{R}$ such that $f(x)=y$.

