Title: p-Adic Numbers and \mathbb{Q}_p

Speaker: Hanna Landrus, Western Washington University

Abstract: In this talk, introducing constructions in analytic number theory, we will examine the rationals under the p-adic norm, the completion under this norm, and results that challenge our usual intuition for numbers. The p-adic norm ($|\cdot|_p$) on the integers defines two numbers as close if their difference is divisible by a large power of p, for the particular prime p. This norm extends naturally to the rationals and we will see that all non-trivial norms on \mathbb{Q} are equivalent to a p-norm or to the Euclidean norm. We will build \mathbb{Q}_p as the completion with respect to $|\cdot|_p$ and consider properties of \mathbb{Q}_p. Working in \mathbb{Q}_p can quickly get messy so we will discuss a process for selecting a unique representative of each equivalence class in \mathbb{Q}_p. Consequently any element of \mathbb{Q}_p has a representation in the base p. Finally, we will examine a criterion for the existence of roots of polynomials.

Refreshments will precede the talk at 3:30pm in Bond Hall 300 courtesy of Dr. Edoh Amiran.