<table>
<thead>
<tr>
<th>English Phrase</th>
<th>Mathematical Phrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>The sum of a number n and 5</td>
<td>(n + 5)</td>
</tr>
<tr>
<td>4 more than a number n</td>
<td>(4 + n)</td>
</tr>
<tr>
<td>13 less than a number n</td>
<td>(n − 13)</td>
</tr>
<tr>
<td>A number n subtracted from 5</td>
<td>(5 − n)</td>
</tr>
<tr>
<td>A number n increased by 8</td>
<td>(n + 8)</td>
</tr>
<tr>
<td>A number n decreased by 8</td>
<td>(n − 8)</td>
</tr>
<tr>
<td>Twice the number n</td>
<td>(2n)</td>
</tr>
<tr>
<td>The sum of 4 times a number n and 7</td>
<td>(4n + 7)</td>
</tr>
<tr>
<td>The product of n and m</td>
<td>(nm)</td>
</tr>
<tr>
<td>A number n divided by 5</td>
<td>(n/5)</td>
</tr>
<tr>
<td>The sum of p and q less the sum of n and m</td>
<td>((p + q) − (n + m))</td>
</tr>
<tr>
<td>9 divided by the number n</td>
<td>(9/n)</td>
</tr>
<tr>
<td>The quotient of a number n and 6</td>
<td>(n/6)</td>
</tr>
<tr>
<td>The ratio of two numbers n and m</td>
<td>(n/m)</td>
</tr>
<tr>
<td>Miles per hour</td>
<td>(\text{miles/hour})</td>
</tr>
<tr>
<td>10% of a number n</td>
<td>(0.10n)</td>
</tr>
<tr>
<td>The sum of x and y is 6</td>
<td>(x + y = 6)</td>
</tr>
<tr>
<td>The sum of x and y is 3 more than twice the product</td>
<td>(x + y = 3 + 2xy)</td>
</tr>
<tr>
<td>The square of a number n</td>
<td>(n^2)</td>
</tr>
<tr>
<td>The square root of a number n</td>
<td>(\sqrt{n})</td>
</tr>
<tr>
<td>The absolute value of a number n</td>
<td>(</td>
</tr>
<tr>
<td>The absolute value of the difference between x and y</td>
<td>(</td>
</tr>
</tbody>
</table>
Common Vocabulary Used in Mathematics

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum</td>
<td>The result of adding numbers</td>
</tr>
<tr>
<td>difference</td>
<td>The result of subtracting numbers</td>
</tr>
<tr>
<td>terms</td>
<td>Quantities that are added or subtracted</td>
</tr>
<tr>
<td>product</td>
<td>The result of multiplying numbers</td>
</tr>
<tr>
<td>factors</td>
<td>Quantities that are multiplied</td>
</tr>
<tr>
<td>factor</td>
<td>The word factor is used in a few different ways including the example above.</td>
</tr>
<tr>
<td>multiple of n</td>
<td>A number that is exactly divisible by n</td>
</tr>
<tr>
<td>quotient</td>
<td>The result of dividing two numbers</td>
</tr>
<tr>
<td>ratio</td>
<td>The quotient of two numbers</td>
</tr>
<tr>
<td>natural numbers</td>
<td>The set of numbers used for counting: {1, 2, 3, 4, 5,\ldots}</td>
</tr>
<tr>
<td>whole numbers</td>
<td>The natural numbers and zero: {0, 1, 2, 3, 4,\ldots}</td>
</tr>
<tr>
<td>integers</td>
<td>The set: {\ldots,-3, -2, -1, 0, 1, 2, 3,\ldots}</td>
</tr>
<tr>
<td>rational numbers</td>
<td>The set of all numbers which can be represented as a fraction using integers</td>
</tr>
<tr>
<td>irrational numbers</td>
<td>The set of numbers with non-repeating, non-terminating decimals</td>
</tr>
<tr>
<td>real numbers</td>
<td>The set of rational and irrational numbers</td>
</tr>
<tr>
<td>variable</td>
<td>A symbol (usually a letter) which stands for a number</td>
</tr>
<tr>
<td>literal part of a term</td>
<td>Non-numerical part of a term (for example, in the term 3xy, xy is the literal part of the term and 3 is called the coefficient)</td>
</tr>
<tr>
<td>like terms</td>
<td>Terms with identical literal parts</td>
</tr>
</tbody>
</table>