\qquad
For a full credit give your answers as exact numbers, not decimal approximations.

1. We all know that $\pi \approx 3.14159$. A very popular rational approximation of π is $\frac{22}{7}$. This is the best approximation for π by a fraction with a two-digit denominator. The best rational approximation of π using a fraction with a three-digit denominator is $\frac{355}{113}$. Notice that $\pi<\frac{355}{113}<\frac{22}{7}$. Use an appropriate linear approximation of the function $f(x)=\sin x$ to find a rational approximation of the number $\sin \left(\frac{22}{7}\right)$. Your answer should look like $\sin \left(\frac{22}{7}\right) \approx \frac{a}{b}$, where a is an integer and b is a three-digit positive integer.
2. An object is launched vertically into the air and its distance from the ground (in feet) at any time $t \leq \ln 10$ (t is in seconds) is given by $h(t)=100\left(1-e^{-t}\right)$. The object is equipped with a remote operated cruise control device (i.e. we can fix the velocity of the object at any moment). Assume that the velocity of the object has been fixed at time $t=\ln 10$.
(a) What is the velocity of the object at time $t=\ln 10$?
(b) What is the height of the object at time $t=\ln 10$?
(c) Assuming that the velocity has been fixed at the time $\ln 10$, give a formula for the height of the object for $t>\ln 10$.
(d) When will the object reach the height of 100 ft ?
3. The picture on the right shows the function $y=$ $f(x)=k \ln x$ and its tangent line. The function and the tangent line touch at the point (a, a). The point $(0,0)$ belongs to the tangent line. Determine the numbers k and a.
4. Consider the function $f(x)=x 2^{x}$.
(a) Calculate the first and the second derivative of f.

Use the derivatives found in (4a) to identify the maximum intervals where:
(b) (i) f is increasing;
(ii) f is decreasing;
(c) (i) f is concave up; (ii) f is concave down.

5. Differentiate each of the following functions:
(A) $\sin (\sqrt{x})$
(B) $\sqrt{\sin (\sqrt{x})}$
(C) $\arctan \left(\frac{1}{x}\right)$
(D) $\sqrt{1+\sqrt{1+x^{2}}}$

For the full credit show all your work.

