For a full credit give your answers as exact numbers, not decimal approximations.

- 1. We all know that $\pi \approx 3.14159$. A very popular rational approximation of π is $\frac{22}{7}$. This is the best approximation for π by a fraction with a two-digit denominator. The best rational approximation of π using a fraction with a three-digit denominator is $\frac{355}{113}$. Notice that $\pi < \frac{355}{113} < \frac{22}{7}$. Use an appropriate linear approximation of the function $f(x) = \sin x$ to find a rational approximation of the number $\sin\left(\frac{22}{7}\right)$. Your answer should look like $\sin\left(\frac{22}{7}\right) \approx \frac{a}{b}$, where a is an integer and b is a three-digit positive integer.
- 2. An object is launched vertically into the air and its distance from the ground (in feet) at any time $t < \ln 10$ (t is in seconds) is given by $h(t) = 100(1 - e^{-t})$. The object is equipped with a remote operated cruise control device (i.e. we can fix the velocity of the object at any moment). Assume that the velocity of the object has been fixed at time $t = \ln 10$.
 - (a) What is the velocity of the object at time $t = \ln 10$?
 - (b) What is the height of the object at time $t = \ln 10$?
 - (c) Assuming that the velocity has been fixed at the time ln 10, give a formula for the height of the object for $t > \ln 10$.
 - (d) When will the object reach the height of 100 ft?
- 3. The picture on the right shows the function y = $f(x) = k \ln x$ and its tangent line. The function and the tangent line touch at the point (a, a). The point (0,0) belongs to the tangent line. Determine the numbers k and a.

- 4. Consider the function $f(x) = x 2^x$.
 - (a) Calculate the first and the second derivative of f.

Use the derivatives found in (4a) to identify the maximum intervals where:

- (b) (i) f is increasing; (ii) f is decreasing;
- (c) (i) f is concave up; (ii) f is concave down.
- 5. Differentiate each of the following functions:
 - (A) $\sin(\sqrt{x})$
- (B) $\sqrt{\sin(\sqrt{x})}$ (C) $\arctan(\frac{1}{x})$
- (D) $\sqrt{1+\sqrt{1+x^2}}$

For the full credit show all your work.