CALCULUS, Fourth Edition, Hughes-Hallett, Gleason, McCallum, et al.
Chapter 7: Section Suggested Problems
$7.11,3,6,9,11,14,18,19,23,27,33,34,36,37$, $55,59,62,65,67,73,74,76,78-80,85$
$7.2 \quad 1-27$ (odd), $30,31,33,34,42,43,44,52$
$7.3 \quad 1-37$ (odd), 45
$7.41,3,4,5,16,17,20,23,35,45,49,57,59,62,63$
$7.511,13,21,22$
7.6 1, 2, 8
$7.7 \quad 1,2,5,7,13,17,19,23,29,31,33$
$7.8 \quad 1,3,12,14,20,21,24,25,35$
Review 60, 85, 113, 135, 150, 151, 155
Problem. Find the indefinite integral $\int \sqrt{1-x^{2}} d x$.
Solution. First notice that

$$
\frac{d}{d x}\left(\sqrt{1-x^{2}}\right)=-\frac{x}{\sqrt{1-x^{2}}}
$$

Next we calculate,

$$
\begin{aligned}
\int \sqrt{1-x^{2}} d x & =\int \frac{1-x^{2}}{\sqrt{1-x^{2}}} d x \\
& =\int \frac{1}{\sqrt{1-x^{2}}} d x+\int \frac{-x^{2}}{\sqrt{1-x^{2}}} d x \\
& =\arcsin x+\int x \frac{-x}{\sqrt{1-x^{2}}} d x \\
& =\arcsin x+x \sqrt{1-x^{2}}-\int \sqrt{1-x^{2}} d x
\end{aligned}
$$

1. Set $u=x, v^{\prime}=\frac{-x}{\sqrt{1-x^{2}}}$
2. Use integration by parts
3. By the first line $v=\sqrt{1-x^{2}}$

We end with the same integral that we started with.

The last equality is in fact an equation which can be solved for $\int \sqrt{1-x^{2}} d x$. The solution is,

$$
\int \sqrt{1-x^{2}} d x=\frac{1}{2}\left(\arcsin x+x \sqrt{1-x^{2}}\right)+C
$$

Now we can calculate the definite integral

$$
\int_{0}^{x} \sqrt{1-t^{2}} d t=\frac{1}{2}\left(\arcsin x+x \sqrt{1-x^{2}}\right)
$$

It is remarkable that the last definite integral has a simple geometric interpretation. What is it?

The textbook suggests a different way to calculate this integral. Understand this alternative way as well and decide which one suits you better.

