MATH $125{ }^{\text {Assigment } 1}$

Name
Problem 1. Consider the function

$$
f(x)=\left\{\begin{array}{ccc}
\frac{\sin x}{x} & \text { for } & x \neq 0 \\
1 & \text { for } & x=0
\end{array}\right.
$$

As it was discussed in Math 124, this function is continuous. Let n be a positive integer and consider the definite integrals

$$
I_{n}=\int_{0}^{n \pi} f(x) d x, \quad n=1,2,3, \ldots
$$

(a) Use properties of the definite integral discussed in Section 5.4 to arrange the numbers

$$
I_{1}, I_{2}, I_{3}, I_{4}, I_{5}
$$

in increasing order.
(b) Give a detailed justification of your inequalities. State clearly which properties of definite integrals from Chapter 5 you used and how they apply to the definite integrals $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}$.
(c) Do you recognize a pattern in the ordering of the numbers

$$
I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}, I_{7}, I_{8}, I_{9}, I_{10}, I_{11}, \ldots ?
$$

State this pattern clearly.
Problem 2. Consider the function $g(x)=(\sin x)^{2}$.
(a) The function g has symmetries which can help you calculate the definite integrals below. Discover these symmetries and explain them.
(b) Use this symmetry, not calculus to evaluate the following two integrals.

$$
\int_{0}^{\pi} g(x) d x, \quad \int_{0}^{\pi / 2} g(x) d x
$$

Provide a clear explanation of your reasoning.
Problem 3. Let a be a positive number; for example $a=1 / 2$, or $a=1$, or $a=2$. The goal of this problem is to study the following definite integrals

$$
I(a)=\int_{0}^{1} \sin \left(2 \pi x^{a}\right) d x, \quad a>0
$$

(a) Identify all values of a for which $I(a)$ is positive. Identify all values of a for which $I(a)$ is negative. Explain your reasoning.
(b) Using your calculator or the Excel spreadsheet that I posted on my website make the table of values of $I(a)$ for the following values of a

$$
\begin{array}{ccccccccccccccccccc}
0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
$$

Based on this table sketch the graph of the function $I(a)$.
(c) Can you guess the values of $\lim _{a \rightarrow 0} I(a)$ and $\lim _{a \rightarrow \infty} I(a)$? Explain your reasoning.
(d) Use the above table to find approximations for the maximum possible value of $I(a)$ and the minimum possible value of $I(a)$. Explain why you think that the values that you found are good approximations. Calculating few more values of $I(a)$ will help strengthen your argument.

