A proof of
 $$
\cos \frac{\pi}{5}=\frac{1}{2} \phi=\frac{1+\sqrt{5}}{4}
$$

The green five-sided polygon is a regular pentagon.

Step 1.

Since the acute angles between the dashed lines are $2 \pi / 5$, the obtuse angles formed by the green lines are

$$
\pi-\frac{2 \pi}{5}=\frac{3 \pi}{5}
$$

Consequently, the smaller angles between the blue line and the green lines are

$$
\frac{\pi}{2}-\frac{3 \pi}{10}=\frac{\pi}{5}
$$

Hence, if the green line segments have unit length, then the cosine of $\pi / 5$ equals one-half of the blue length.

Figure 1: $\cos \frac{\pi}{5}$ equals one-half of the blue length

Step 2.

All the angles in this figure are either $\pi / 5,2 \pi / 5$, or $3 \pi / 5$. Therefore the triangles $\triangle A B C$ and $\triangle C A D$ are similar. Let the length of the line segment $\overline{A C}$ be 1 and denote by d the length of the line segment $\overline{A B}$. The similarity of $\triangle A B C$ and $\triangle C A D$ then yields

$$
\frac{d}{1}=\frac{1}{d-1}
$$

Thus $d^{2}-d-1=0$. The positive solution of this equation is

$$
d=\frac{1+\sqrt{5}}{2}
$$

the golden ratio ϕ.

Figure 2: The blue length is the golden ratio

