Two problems related to Section 5.4

Problem 1. Consider the function

$$
f(x)=\left\{\begin{array}{ccc}
\frac{\sin x}{x} & \text { for } & x \neq 0 \\
1 & \text { for } & x=0
\end{array}\right.
$$

As it was discussed in Math 124, this function is continuous. Let n be a positive integer and consider the definite integrals

$$
I_{n}=\int_{0}^{n \pi} f(x) d x, \quad n=1,2,3, \ldots
$$

(a) Use properties of the definite integral discussed in Section 5.4 to arrange the numbers $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, \ldots$ in increasing order.
(b) Explain your reasoning by stating explicitly which properties you use and how they apply to the definite integrals $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, \ldots$.
(c) Do you recognize a pattern in the ordering of the numbers

$$
I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}, I_{7}, I_{8}, I_{9}, I_{10}, I_{11}, \ldots ?
$$

State this pattern clearly.
Problem 2. Consider the function $g(x)=(\sin x)^{2}$.
(a) The function g has symmetries which can help you calculate the definite integrals below. Discover these symmetries and explain them.
(b) Calculate the exact value of $\int_{0}^{\pi} g(x) d x$.
(c) Calculate the exact value of $\int_{0}^{\pi / 2} g(x) d x$.

Give detailed explanations of your reasoning.

