Today, Wednesday, January 21, 2009, we discussed the integrals of the form

$$
\int_{a(t)}^{b(t)} f(x) d x
$$

Here $a(t), b(t)$ and $f(x)$ are given continuous functions. It is important that the ranges of the functions $a(t), b(t)$ are contained in the domain of the function $f(x)$. Then

$$
G(t)=\int_{a(t)}^{b(t)} f(x) d x
$$

is a function of t. In class we proved the formula

$$
G^{\prime}(t)=\frac{d}{d t} \int_{a(t)}^{b(t)} f(x) d x=f(b(t)) b^{\prime}(t)-f(a(t)) a^{\prime}(t)
$$

The functions that I used in the animation are

$$
\begin{aligned}
a(t) & =\frac{1}{2}+\left(1-\frac{1}{2 \pi}\right) t-(1-\cos t) \\
b(t) & =\frac{1}{2}+\left(1-\frac{1}{2 \pi}\right) t+(1-\cos t) \\
f(x) & =\frac{3}{2}+\frac{3}{7} x+\sin x
\end{aligned}
$$

