Here are few more integrals. We start with two simple integrals solved by substitution. Then we use algebra, a lots of algebra, to transform complicated looking expressions to sums of these two simple integrals.

Integral 1. In the following integral m and k are real numbers; $m \neq 0$.

$$
\begin{aligned}
\int \frac{1}{m x+k} d x & =\left\lvert\, \begin{array}{lc}
w=m x+k & \leftarrow \text { This is a "natural" substitution. } \\
\frac{d w}{d x}=m & \\
d x=\frac{1}{m} d w & \leftarrow \text { This is the substitution for } d x .
\end{array}\right. \\
& =\int \frac{1}{w} \frac{1}{m} d w \\
& =\frac{1}{m} \int \frac{1}{w} d w \\
& =\frac{1}{m} \ln |w|+C \\
& =\frac{1}{m} \ln (|m x+k|)+C .
\end{aligned}
$$

Integral 2. In the following integral a is a positive real number. The following integral smells like it is related to $\arctan (x)$. Remember $\frac{d}{d x}(\arctan (x))=\frac{1}{1+x^{2}}$. So my first step is to use algebra get an expression looking like $\frac{1}{1+x^{2}}$.

$$
\begin{aligned}
\int \frac{1}{a^{2}+x^{2}} d x & =\int \frac{1}{a^{2}\left(1+\frac{x^{2}}{a^{2}}\right)} d x=\int \frac{1}{a^{2}} \cdot \frac{1}{1+\frac{x^{2}}{a^{2}}} d x \\
& =\frac{1}{a^{2}} \int \frac{1}{1+\left(\frac{x}{a}\right)^{2}} d x \quad \leftarrow \begin{array}{l}
\text { This expression suggests } \\
\text { a "natural" substitution. }
\end{array} \\
& =\left\lvert\, \begin{array}{l}
w=\frac{x}{a} \leftarrow \frac{\text { This is a "natural" substitution. }}{d x}=\frac{1}{a} \\
d x=a d w \quad \text { This is the substitution for } d x .
\end{array}\right. \\
& =\frac{1}{a^{2}} \int \frac{a}{1+w^{2}} d w \\
& =\frac{1}{a} \int \frac{1}{1+w^{2}} d w \\
& =\frac{1}{a} \arctan (w)+C \\
& =\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C .
\end{aligned}
$$

Integral 3. Here is another type of integral that leads to arctan after a substitution.

$$
\begin{aligned}
\int \frac{1}{5-4 x+x^{2}} d x & =\int \frac{1}{1+4-4 x+x^{2}} d x \\
& =\int \frac{1}{1+(x-2)^{2}} d x \quad \leftarrow \begin{array}{|c}
\text { This expression suggests } \\
\text { a "natural" substitution. }
\end{array} \\
& =\left\lvert\, \begin{array}{l}
w=x-2 \quad \leftarrow \frac{\text { This is a "natural" substitution. }}{d x}=1 \\
d x=d w \quad \leftarrow \text { This is the substitution for } d x .
\end{array}\right. \\
& =\int \frac{1}{1+w^{2}} d w \\
& =\arctan (w)+C \\
& =\arctan (x-2)+C .
\end{aligned}
$$

Integral 4. The following integral is very similar to what we did in class today.

$$
\int \frac{x^{2}+2 x-3}{x^{3}-7 x-6} d x
$$

But, the numerator is definitely not the derivative of the denominator, so the cheap trick of substitution $w=x^{3}-7 x-6$ does not work here.

To use partial fractions we need the roots of $x^{3}-7 x-6=0$. As in the textbook, I will give the roots:

$$
x^{3}-7 x-6=(x+1)(x+2)(x-3) .
$$

Now we can look for A_{1}, A_{2}, A_{3} such that

$$
\frac{x^{2}+2 x-3}{x^{3}-7 x-6}=\frac{A_{1}}{x+1}+\frac{A_{2}}{x+2}+\frac{A_{3}}{x-3} .
$$

To determine A_{1}, A_{2}, A_{3} we write three fractions with a common denominator

$$
\frac{x^{2}+2 x-3}{x^{3}-7 x-6}=\frac{A_{1}(x+2)(x-3)+A_{2}(x+1)(x-3)+A_{3}(x+1)(x+2)}{(x+1)(x+2)(x-3)} .
$$

Since the denominators of the last to fractions are identical, for the equality to hold, the numerators must be identical as well:

$$
x^{2}+2 x-3=A_{1}(x+2)(x-3)+A_{2}(x+1)(x-3)+A_{3}(x+1)(x+2) .
$$

Here we have two quadratic expressions. For these two quadratic expressions to be identical they must have identical coefficients with x^{2}, x and the constant coefficient. The coefficients of $x^{2}+2 x-3$ are easy to see, but the coefficients of

$$
A_{1}(x+2)(x-3)+A_{2}(x+1)(x-3)+A_{3}(x+1)(x+2)
$$

are somewhat disguised. For example the coefficient with x^{2} is $A_{1}+A_{2}+A_{3}$.
Rather than determining the coefficient with x and the constant coefficient, I will use Bryce's stated in class today. His idea was to look at roots of the quadratics. Since the roots of $x^{2}+2 x-3$ are -3 and 1 , we must have

$$
\begin{aligned}
A_{1}((-3)+2)((-3)-3)+A_{2}((-3)+1)((-3)-3)+A_{3}((-3)+1)((-3)+2) & =0 \\
A_{1}(1+2)(1-3)+A_{2}(1+1)(1-3)+A_{3}(1+1)(1+2) & =0
\end{aligned}
$$

That is

$$
\begin{array}{r}
6 A_{1}+12 A_{2}+2 A_{3}=0 \\
-6 A_{1}-4 A_{2}+6 A_{3}=0
\end{array}
$$

In addition to these two equations the coefficients A_{1}, A_{2}, A_{3} must satisfy

$$
A_{1}+A_{2}+A_{3}=1
$$

We rewrite these three equations as

$$
\begin{array}{r}
A_{1}+A_{2}+A_{3}=1, \\
3 A_{1}+6 A_{2}+A_{3}=0, \\
-3 A_{1}-2 A_{2}+3 A_{3}=0 .
\end{array}
$$

Next we do two operations. First, multiply the first equation by 3 and add it to the third equation, second add the second and the third equation, to obtain:

$$
\begin{aligned}
A_{2}+6 A_{3} & =3 \\
4 A_{2}+4 A_{3} & =0
\end{aligned}
$$

From the last equation $A_{2}=-A_{3}$, and substituting into the preceding equation we get $5 A_{3}=3$, so $A_{3}=3 / 5, A_{2}=-3 / 5$. Now A_{1} is easily calculated, $A_{1}=1$.

Therefore

$$
\frac{x^{2}+2 x-3}{x^{3}-7 x-6}=\frac{1}{x+1}-\frac{3}{5} \frac{1}{x+2}+\frac{3}{5} \frac{1}{x-3} .
$$

Consequently

$$
\int \frac{x^{2}+2 x-3}{x^{3}-7 x-6} d x=\int \frac{1}{x+1} d x-\frac{3}{5} \int \frac{1}{x+2} d x+\frac{3}{5} \int \frac{1}{x-3} d x
$$

Now we use Integral 1 with $m=1$ and an appropriate k. We get

$$
\begin{aligned}
& \int \frac{1}{x+1} d x=\ln |x+1|+C \\
& \int \frac{1}{x+2} d x=\ln |x+2|+C \\
& \int \frac{1}{x-3} d x=\ln |x-3|+C
\end{aligned}
$$

Finally, we have the integral, (I simplify the expression involving three logarithms to just one logarithm as an exercise in logarithm identities)

$$
\begin{aligned}
\int \frac{x^{2}+2 x-3}{x^{3}-7 x-6} d x & =\ln |x+1|-\frac{3}{5} \ln |x+2|+\frac{3}{5} \ln |x-3|+C \\
& =\ln |x+1|+\ln (|x+2|)^{-3 / 5}+\ln (|x-3|)^{3 / 5}+C \\
& =\ln |x+1|+\ln \left(\frac{1}{|x+2|^{3 / 5}}\right)+\ln \left(|x-3|^{3 / 5}\right)+C
\end{aligned}
$$

$$
\begin{aligned}
& =\ln \left(|x+1| \frac{1}{|x+2|^{3 / 5}}|x-3|^{3 / 5}\right)+C \\
& =\ln \left(|x+1|\left(\frac{|x-3|}{|x+2|}\right)^{3 / 5}\right)+C
\end{aligned}
$$

