
Here are few more integrals. We start with two simple integrals solved by sub-
stitution. Then we use algebra, a lots of algebra, to transform complicated looking
expressions to sums of these two simple integrals.

Integral 1. In the following integral m and k are real numbers; m 6= 0.

∫

1

mx + k
dx =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

w = mx + k ← This is a “natural” substitution.

dw

dx
= m

dx =
1

m
dw ← This is the substitution for dx.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∫

1

w

1

m
dw

=
1

m

∫

1

w
dw

=
1

m
ln |w|+ C

=
1

m
ln(|mx + k|) + C.
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Integral 2. In the following integral a is a positive real number. The following
integral smells like it is related to arctan(x). Remember d

dx

(

arctan(x)
)

= 1

1+x2 . So

my first step is to use algebra get an expression looking like 1

1+x2 .

∫

1

a2 + x2
dx =

∫

1

a2
(

1 + x2

a2

) dx =

∫

1

a2
·

1

1 + x2

a2

dx

=
1

a2

∫

1

1 +
(

x
a

)2
dx ←

This expression suggests
a “natural” substitution.

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

w =
x

a
← This is a “natural” substitution.

dw

dx
=

1

a

dx = a dw ← This is the substitution for dx.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

a2

∫

a

1 + w2
dw

=
1

a

∫

1

1 + w2
dw

=
1

a
arctan(w) + C

=
1

a
arctan

(x

a

)

+ C.
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Integral 3. Here is another type of integral that leads to arctan after a substitution.

∫

1

5− 4x + x2
dx =

∫

1

1 + 4− 4x + x2
dx

=

∫

1

1 + (x− 2)2
dx ←

This expression suggests
a “natural” substitution.

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

w = x− 2 ← This is a “natural” substitution.

dw

dx
= 1

dx = dw ← This is the substitution for dx.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∫

1

1 + w2
dw

= arctan(w) + C

= arctan(x− 2) + C.
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Integral 4. The following integral is very similar to what we did in class today.

∫

x2 + 2x− 3

x3 − 7x− 6
dx.

But, the numerator is definitely not the derivative of the denominator, so the cheap
trick of substitution w = x3 − 7x− 6 does not work here.

To use partial fractions we need the roots of x3− 7x− 6 = 0. As in the textbook,
I will give the roots:

x3 − 7x− 6 = (x + 1)(x + 2)(x− 3).

Now we can look for A1, A2, A3 such that

x2 + 2x− 3

x3 − 7x− 6
=

A1

x + 1
+

A2

x + 2
+

A3

x− 3
.

To determine A1, A2, A3 we write three fractions with a common denominator

x2 + 2x− 3

x3 − 7x− 6
=

A1(x + 2)(x− 3) + A2(x + 1)(x− 3) + A3(x + 1)(x + 2)

(x + 1)(x + 2)(x− 3)
.

Since the denominators of the last to fractions are identical, for the equality to hold,
the numerators must be identical as well:

x2 + 2x− 3 = A1(x + 2)(x− 3) + A2(x + 1)(x− 3) + A3(x + 1)(x + 2).

Here we have two quadratic expressions. For these two quadratic expressions to be
identical they must have identical coefficients with x2, x and the constant coefficient.
The coefficients of x2 + 2x− 3 are easy to see, but the coefficients of

A1(x + 2)(x− 3) + A2(x + 1)(x− 3) + A3(x + 1)(x + 2)

are somewhat disguised. For example the coefficient with x2 is A1 + A2 + A3.
Rather than determining the coefficient with x and the constant coefficient, I will

use Bryce’s stated in class today. His idea was to look at roots of the quadratics.
Since the roots of x2 + 2x− 3 are −3 and 1, we must have

A1((−3) + 2)((−3)− 3) + A2((−3) + 1)((−3)− 3) + A3((−3) + 1)((−3) + 2) = 0,

A1(1 + 2)(1− 3) + A2(1 + 1)(1− 3) + A3(1 + 1)(1 + 2) = 0.

That is

6A1 + 12A2 + 2A3 = 0,

−6A1 − 4A2 + 6A3 = 0.
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In addition to these two equations the coefficients A1, A2, A3 must satisfy

A1 + A2 + A3 = 1

We rewrite these three equations as

A1 + A2 + A3 = 1,

3A1 + 6A2 + A3 = 0,

−3A1 − 2A2 + 3A3 = 0.

Next we do two operations. First, multiply the first equation by 3 and add it to the
third equation, second add the second and the third equation, to obtain:

A2 + 6A3 = 3,

4A2 + 4A3 = 0.

From the last equation A2 = −A3, and substituting into the preceding equation we
get 5A3 = 3, so A3 = 3/5, A2 = −3/5. Now A1 is easily calculated, A1 = 1.

Therefore
x2 + 2x− 3

x3 − 7x− 6
=

1

x + 1
−

3

5

1

x + 2
+

3

5

1

x− 3
.

Consequently

∫

x2 + 2x− 3

x3 − 7x− 6
dx =

∫

1

x + 1
dx−

3

5

∫

1

x + 2
dx +

3

5

∫

1

x− 3
dx.

Now we use Integral 1 with m = 1 and an appropriate k. We get
∫

1

x + 1
dx = ln |x + 1|+ C,

∫

1

x + 2
dx = ln |x + 2|+ C,

∫

1

x− 3
dx = ln |x− 3|+ C.

Finally, we have the integral, (I simplify the expression involving three logarithms
to just one logarithm as an exercise in logarithm identities)

∫

x2 + 2x− 3

x3 − 7x− 6
dx = ln |x + 1| −

3

5
ln |x + 2|+

3

5
ln |x− 3|+ C

= ln |x + 1|+ ln
(

|x + 2|
)

−3/5
+ ln

(

|x− 3|
)3/5

+ C

= ln |x + 1|+ ln

(

1

|x + 2|3/5

)

+ ln
(

|x− 3|3/5
)

+ C
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= ln

(

|x + 1|
1

|x + 2|3/5
|x− 3|3/5

)

+ C

= ln

(

|x + 1|

(

|x− 3|

|x + 2|

)3/5
)

+ C

6


