Examination
October 30, 2015

Name \qquad

Give detailed explanations for your answers.

On in class exams I assign four problems. Each is worth 25 points.
I try to assign problems from different topics that we covered.
Below are several problems to help you get used to my style of exam questions.

1. In this problem A is $n \times n$ matrix. Without using the Invertible Matrix Theorem give explanations for the following implications.
(a) If the equation $A \mathbf{x}=\mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^{n}, then there is an $n \times n$ matrix D such that $A D=I$. Explain why.
(b) If there is an $n \times n$ matrix D such that $A D=I$, then the equation $A \mathbf{x}=\mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^{n}. Explain why.
(c) If there is an $n \times n$ matrix C such that $C A=I$, then the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. Explain why.
2. This problem is about invertible matrices. Let A be an $n \times n$ matrix.
(a) State the definition of an invertible matrix.
(b) Prove the implication: If A is invertible, then A is row equivalent to I_{n}.
(c) Prove the implication: If A is row equivalent to I_{n}, then A is invertible.
3. For each matrix below determine whether it is invertible or not. Explain your claim. If a matrix is invertible find its inverse.

$$
\begin{array}{ccc}
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], & B=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], & C=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], \\
D=\left[\begin{array}{rrr}
1 & 0 & 1 \\
-1 & -1 & 1 \\
-1 & 0 & 1
\end{array}\right], & E=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 / 3 & 0 \\
0 & 0 & 5
\end{array}\right], & F=\left[\begin{array}{rr}
1 & -1 / 2 \\
-2 & 1
\end{array}\right] .
\end{array}
$$

4. Consider the matrix $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right]$.
(a) Find A^{-1}. Prove that your answer is correct by calculating $A A^{-1}$.
(b) Use the inverse A^{-1} to find x_{1}, x_{2}, x_{3} such that

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right]+x_{3}\left[\begin{array}{l}
2 \\
3 \\
2
\end{array}\right]
$$

5. Determine h such that

$$
\left|\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 2 & 1 & h \\
2 & -2 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right|=0
$$

6. Let a, b, c, d be real numbers. Calculate the following three determinants:

$$
\left|\begin{array}{lll}
a & 0 & b \\
0 & 1 & 0 \\
c & 0 & d
\end{array}\right|, \quad\left|\begin{array}{lllll}
a & 0 & 0 & 0 & b \\
0 & a & 0 & b & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & c & 0 & d & 0 \\
c & 0 & 0 & 0 & d
\end{array}\right|, \quad\left|\begin{array}{ccccccc}
a & 0 & 0 & 0 & 0 & 0 & b \\
0 & a & 0 & 0 & 0 & b & 0 \\
0 & 0 & a & 0 & b & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & c & 0 & d & 0 & 0 \\
0 & c & 0 & 0 & 0 & d & 0 \\
c & 0 & 0 & 0 & 0 & 0 & d
\end{array}\right| .
$$

7. Consider the matrices $A=\left[\begin{array}{rr}1 & -3 \\ -1 & k\end{array}\right]$ and $B=\left[\begin{array}{rr}4 & -6 \\ -2 & 3\end{array}\right]$
(a) What values of k (if any) will make A invertible?
(b) What values of k (if any) will make $A B$ invertible?
(c) What values of k (if any) will make $A B=B A$?
8. Let A be an unknown square matrix. To A we perform the following row operations:

- Row 1 gets replaced by $\frac{1}{2}$ times Row 1. $\left(R_{1} \mapsto \frac{1}{2} R_{1}\right)$
- Rows 2 and 3 are swapped $\left(R_{2} \mapsto R_{3}, R_{3} \mapsto R_{2}\right)$
- Row 2 gets replaced by -3 Row 2. $\left(R_{2} \mapsto-3 R_{2}\right)$
- Row 3 gets replaced by Row 3 minus 6 Row 2. $\left(R_{3} \mapsto R_{3}-6 R_{2}\right)$

The resulting matrix B has determinant $\operatorname{det} B=4$. What is the determinant of the unknown matrix A.
9. Let A be an unknown 3×3 matrix. To A we perform the following row operations:

- Row 1 gets replaced by $\frac{1}{2}$ times Row 1 . $\left(R_{1} \mapsto \frac{1}{2} R_{1}\right)$
- Rows 2 and 3 are swapped $\left(R_{2} \mapsto R_{3}, R_{3} \mapsto R_{2}\right)$
- Row 2 gets replaced by -3 Row 2. $\left(R_{2} \mapsto-3 R_{2}\right)$
- Row 3 gets replaced by Row 3 minus 6 Row 2. $\left(R_{3} \mapsto R_{3}-6 R_{2}\right)$

The resulting matrix B is the identity matrix. What is the matrix A ?
10. Consider the matrix $V=\left[\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right]$
(a) Calculate the determinant $\operatorname{det} V$.
(b) Find values for x, y, z such that V is invertible and values for x, y, z in which V is not invertible.
11. Determine whether it is possible to write the matrix $M=\left[\begin{array}{lll}3 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 0\end{array}\right]$ as a product of elementary matrices. If you claim that it is possible to write M as a product of elementary matrices, then find elementary matrices whose product is M. If you claim that it is not possible to write M as a product of elementary matrices, then justify your claim.
12. Calculate the determinant $\left|\begin{array}{llll}1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 5 & 0 & 6 & 7 \\ 0 & 0 & 8 & 9\end{array}\right|$.

