GIVE DETAILED EXPLANATIONS FOR YOUR ANSWERS.

On in class exams I assign four problems. Each is worth 25 points.

I try to assign problems from different topics that we covered.

Below are several problems to help you get used to my style of exam questions.

1. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{v}_4 = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{v}_5 = \begin{bmatrix} -1 \\ 1 \\ 4 \\ 4 \end{bmatrix}$ be given vectors in \mathbb{R}^4 .

- (a) Row reduce the 4×5 matrix whose columns are the given vectors. Use the reduced row echelon form to answer the questions below.
- (b) Are vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5$ linearly independent? Give justification for your answer based on the definition. Be specific!
- (c) Find a basis for span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5\}$. What is the dimension of this space? Do vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5$ span \mathbb{R}^4 . Again, be specific!
- (d) What is the dimension of $V = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$? What is the dimension of $W = \text{span}\{\mathbf{v}_4, \mathbf{v}_5\}$? Find a <u>nonzero</u> vector \mathbf{u} which belongs to both subspace V and W. Be specific! Give \mathbf{u} as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ and of $\mathbf{v}_4, \mathbf{v}_5$. A complete answer to (1b) can help here.

2. Let
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & -3 & 5 \\ 1 & 0 & 7 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -2 & -1 \\ -2 & -1 & 0 \\ -7 & 4 & 3 \end{bmatrix}$. Determine whether the matrices A and

B have the same column space. (Important Note: If you claim that A and B have the same column space justify your claim by calculations. If you claim that the matrices do not have the same column space give a specific vector which is in one column space but not in the other.)

3. (a) Let $\mathbf{v}_1, \dots, \mathbf{v}_m$ be vectors in a vector space \mathcal{V} . State the definition of linear independence for the vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$

The rest of this problem is about the space \mathbb{P}_2 of all polynomials of degree at most 2.

- (b) Consider the polynomials $\mathbf{q}_1(t) = t$, $\mathbf{q}_2(t) = 1 t^2$, $\mathbf{q}_3(t) = 1 + t^2$ in \mathbb{P}_2 . Are these polynomials linearly independent in \mathbb{P}_2 ? Why or why not?
- (c) Let \mathcal{H} be the set of all polynomials \mathbf{p} in \mathbb{P}_2 such that $\mathbf{p}(-1) = \mathbf{p}(1)$. Show that \mathcal{H} is a subspace of \mathbb{P}_2 .
- (d) Find a basis for \mathcal{H} .
- 4. Suppose that A is 12×17 matrix and let $S : \mathbb{R}^{17} \to \mathbb{R}^{12}$ be a linear transformation given by $S(\mathbf{x}) = A\mathbf{x}$.

Suppose that B is 17×12 matrix and let $T : \mathbb{R}^{12} \to \mathbb{R}^{17}$ be a linear transformation given by $T(\mathbf{x}) = B\mathbf{x}$.

(a) Can S be one-to-one? Why or why not? Can S be onto? Why or why not? Is there a connection between S being one-to-one or onto and Nul A?

- (b) Can T be one-to-one? Why or why not? Can T be onto? Why or why not? Is there a connection between T being one-to-one or onto and Nul B?
- (c) If $\mathbf{b} \in \mathbb{R}^{12}$ is such that $A\mathbf{x} = \mathbf{b}$ has no solution, what can you conclude about the dimension of Nul A? (Give your answer in the form: ?? \leq dim Nul A \leq ??, where ?? stand for a specific integer.)
- (d) If $\mathbf{b} \in \mathbb{R}^{17}$ is such that $B\mathbf{x} = \mathbf{b}$ has no solution, what can you conclude about the dimension of Nul B? (Give your answer in the form: ?? \leq dim Nul $B \leq$??, where ?? stand for a specific integer.)
- (e) Which of the matrices AB, BA is defined? Which of these matrices could be invertible? Which of these matrices is never invertible? Explain your answers.
- 5. In this problem we consider the vector space \mathbb{P}_2 of all polynomials of degree at most 2. Recall that the standard basis for \mathbb{P}_2 is $\mathcal{S} = \{1, t, t^2\}$.
 - (a) Consider the polynomials $\mathbf{q}_1(t) = 1 t^2$, $\mathbf{q}_2(t) = t$, $\mathbf{q}_3(t) = 1 + t^2$ in \mathbb{P}_2 . Prove that $\mathcal{B} = \{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$ is a basis for \mathbb{P}_2 .
 - (b) Find $\underset{\mathcal{B} \leftarrow \mathcal{S}}{P}$.
 - (c) Find the basis \mathcal{C} for \mathbb{P}_2 if $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} = A$, where $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix}$.
- 6. Consider the matrix $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 2 & 5 \end{bmatrix}$.
 - (a) Find all eigenvalues of A.
 - (b) For each eigenvalue find a corresponding eigenvector.
- 7. Consider the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ -1 & 0 & -1 \\ -4 & 4 & -5 \end{bmatrix}$. The eigenvalues of this matrix are -1 and -2. Find all eigenvectors corresponding to the eigenvalue -1.
- 8. Below I give two 3×5 matrices A and B together with their reduced row echelon forms:

$$A = \begin{bmatrix} 1 & 2 & 1 & 3 & 4 \\ 1 & 2 & 2 & 4 & 5 \\ 2 & 4 & 1 & 5 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 2 & 3 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & 3 & 1 & 2 & 1 \\ 5 & 4 & 2 & 2 & 1 \\ 7 & 5 & 1 & 4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 2 & 1 \\ 0 & 1 & 3 & -2 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Denote the columns of A by \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , \vec{v}_4 , \vec{v}_5 . Notice that the columns of the matrix B are the columns of the matrix A in reversed order. Therefore $\operatorname{Col} A = \operatorname{Col} B$.

- (a) i. Which basis for $\operatorname{Col} A$ is determined by the given RREF of A? Call this basis A.
 - ii. Which basis for $\operatorname{Col} B$ is determined by the given RREF of B? Call this basis \mathcal{B} .

- (b) With the bases \mathcal{A} and \mathcal{B} found in the previous two items, find $\underset{\mathcal{A} \leftarrow \mathcal{B}}{P}$ and $\underset{\mathcal{B} \leftarrow \mathcal{A}}{P}$.
- 9. By $\mathbb{R}^{2\times 2}$ we denote the vector space of all 2×2 matrices. Let A be a matrix in $\mathbb{R}^{2\times 2}$. Decide which of the following are subspaces and justify your answer.

(a)
$$\mathcal{H} = \{ B \in \mathbb{R}^{2 \times 2} : AB = BA \}$$

(b)
$$\mathcal{H} = \{ B \in \mathbb{R}^{2 \times 2} : BA = 0 \}$$

(c)
$$\mathcal{H} = \left\{ B \in \mathbb{R}^{2 \times 2} : BB^{\top} = 0 \right\}$$

(d)
$$\mathcal{H} = \left\{ B \in \mathbb{R}^{2 \times 2} : \det(B) = 0 \right\}$$

10. Consider the following matrices

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & 1 & 3 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 3 & 2 & 3 \\ 4 & 3 & 6 \end{bmatrix}$$

Determine all vectors which belong to both $\operatorname{Col} A$ and $\operatorname{Col} B$.

11. Consider the vectors:
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{v}_4 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$.

- (a) Calculate the dimension of span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$.
- (b) Let A be a matrix such that Nul $A = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$. Based on what you calculated in (11a), can you determine what is rank A? Explain your reasoning.
- 12. Consider the vectors: $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$. These three vectors form a basis for \mathbb{R}^3 . Denote this bases by $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$.
 - (a) Which vector $\mathbf{v} \in \mathbb{R}^3$ satisfies $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$?

(b) Calculate
$$\begin{bmatrix} \mathbf{e}_1 \end{bmatrix}_{\mathcal{B}}$$
, $\begin{bmatrix} \mathbf{e}_2 \end{bmatrix}_{\mathcal{B}}$, $\begin{bmatrix} \mathbf{e}_3 \end{bmatrix}_{\mathcal{B}}$, where $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

13. (a) Let $\mathbf{v}_1, \dots, \mathbf{v}_m$ be vectors in a vector space \mathcal{V} . State the definition of linear independence for the vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$

The rest of this problem is about the space \mathbb{P}_2 of all polynomials of degree at most 2.

- (b) Consider the polynomials $\mathbf{q}_1(t) = t$, $\mathbf{q}_2(t) = 1 t^2$, $\mathbf{q}_3(t) = 1 + t^2$ in \mathbb{P}_2 . Are these polynomials linearly independent in \mathbb{P}_2 ? Why or why not?
- (c) Let H be the set of all polynomials \mathbf{p} in \mathbb{P}_2 such that $\mathbf{p}(-1) = \mathbf{p}(1)$. Show that H is a subspace of \mathbb{P}_2 .

(d) Find a basis for H.

14. Let $A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & -3 & 5 \\ 1 & 0 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 & -1 \\ -2 & -1 & 0 \\ -7 & 4 & 3 \end{bmatrix}$. Determine whether the matrices A and

B have the same column space. (*Important Note:* If you claim that A and B have the same column space justify your claim by calculations. If you claim that the matrices do not have the same column space give a specific vector which is in one column space but not in the other.)

15. Let \mathbb{P}_3 be the vector space of polynomials of degree less or equal to three. Recall that the polynomials 1, t, t^2 , t^3 form a basis for \mathbb{P}_3 , which we denote by \mathcal{S} and call the standard basis for \mathbb{P}_3 .

Let \mathcal{H} be the subset of \mathbb{P}_3 consisting of those polynomials $\mathbf{p}(t)$ satisfying $\mathbf{p}(0) = 0$ and $\mathbf{p}(1) = 0$.

- (a) Prove that \mathcal{H} is a subspace of \mathbb{P}_3 .
- (b) Let $\mathbf{u}(t) = t^3 t^2$ and $\mathbf{v}(t) = t^3 t$ be two polynomials in \mathbb{P}_3 . Let $\mathcal{B} = {\mathbf{u}, \mathbf{v}}$. State the two properties that \mathcal{B} must satisfy in order to be a basis for \mathcal{H} and prove them.