Fall 2019 Math 204 Topics for Exam 1
1.1 Linear systems. Know:
$>$ The definition of a linear equation and the definition of a linear system;
$>$ What is the coefficient matrix and the augmented matrix of a linear system;
$>$ What are equivalent linear systems and what are three basic operations which transform a linear system into an equivalent simpler system;
$>$ The existence and uniqueness questions for linear system.
1.2 Row reduction, row echelon form (REF) and reduced row echelon form (RREF). Know:
$>$ The definitions of REF and RREF of a matrix and how to use the Row Reduction Algorithm to transform a matrix to RREF.
$>$ The concepts of a pivot position and a pivot column in a matrix and the connection with the basic and free variables of a system.
$>$ How to use row reduction to find the general solution of a linear system and how to write this solution in parametric vector form.
> The Existence and Uniqueness Theorem (Theorem 2 page 21).
1.3 Vector equations. Know:
$>$ How to write a linear system as one vector equation.
$>$ It is essential to know how to verify whether row reduction has been performed correctly: The linear relationships among vectors in the given matrix and its RREF are the same.
$>$ Algebraic operations in the vector space \mathbb{R}^{n}, their geometric illustrations in \mathbb{R}^{2} and \mathbb{R}^{3}.
$>$ The concepts of a linear combination of vectors and a span of vectors and the geometric interpretation of a span in \mathbb{R}^{2} and \mathbb{R}^{3}.
1.4 The matrix equation $A \mathrm{x}=\mathrm{b}$. Know:
$>$ The definition of matrix-vector product and its basic properties: $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}, A(c \mathbf{u})=c A \mathbf{u}$ (Theorem 5).
$>$ The matrix equation, the vector equation and the linear system which have the same solution set (Theorem 3).
$>$ Four equivalent ways of saying: For every $\mathbf{b} \in \mathbb{R}^{m}$ the equation $A \mathbf{x}=\mathbf{b}$ has a solution (Theorem 4).
1.5 Solutions sets of linear systems. Know:
$>$ The geometric illustration of the expression $\mathbf{p}+t \mathbf{v}$ where t is an arbitrary scalar and \mathbf{p} and \mathbf{v} are fixed vectors in \mathbb{R}^{n}.
$>$ The geometric illustration of the expression $\mathbf{p}+s \mathbf{u}+t \mathbf{v}$ where t and s are arbitrary scalars and \mathbf{p}, \mathbf{u} and \mathbf{v} are fixed vectors in \mathbb{R}^{n}.
$>$ How to write a solution of a linear system in parametric vector form.
$>$ The relationship between the solution sets of a nonhomogeneous equation $A \mathbf{x}=\mathbf{b}$ and the corresponding homogeneous equation $A \mathbf{x}=\mathbf{0}$ (Theorem 6).
1.7 Linear independence. Know:
$>$ The definitions of linear independence and linear dependence and how to implement them to decide whether given vectors are linearly dependent or independent.
$>$ The meaning of linear independence/dependence in the case of one vector and two vectors.
$>$ Two simple sufficient conditions for the linear dependence (Theorems 8 and 9).
$>$ Characterization of linearly dependent sets (Theorems 7).
1.8 Linear transformations. Know:
$>$ That in this context the words transformation, mapping and function are synonyms.
$>$ The definition of a linear transformation. Let n and m be positive integers. A transformation T defined on \mathbb{R}^{n} and with the values in \mathbb{R}^{m} is linear if the following two conditions are satisfied: $T(\mathbf{x}+\mathbf{y})=T \mathbf{x}+T \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $T(c \mathbf{x})=c T \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$ and all $c \in \mathbb{R}$.
$>$ How to associate pictures to formulas and formulas to pictures.

1.9 Matrix of a linear transformations. Know:

$>$ The most important theorem on the standard matrix for a linear transformation: If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then there exists a unique $m \times n$ matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. In fact, the j th column of A is $T\left(\mathbf{e}_{j}\right)$, where \mathbf{e}_{j} is the j th column of the identity matrix.
$>$ How to use the above theorem to get the standard matrix for a rotation about the origin in \mathbb{R}^{2} and a reflection through a line passing through the origin in \mathbb{R}^{2} (which are linear transformations of \mathbb{R}^{2}).
$>$ How to use the above theorem to get the standard matrices of transformations in Tables 1, 2, 3, 4 in Section 1.9. Also Exercises 1-22 all use this idea.

