Fall 2019 Math 204 Topics for the second exam
1.9 Matrix of a linear transformations. Know:
$>$ Definitions of injection (one-to-one) and surjection (onto) for linear transformations and the characterizations in Theorems 11 and 12. Exercises 23-30.
2.1 Matrix operations. $>$ Know how to add matrices and multiply matrices with a scalar and properties of these operations.
$>$ Know how to multiply two matrices (the definition and row-column rule for the computation).
$>$ Know properties of matrix multiplication.
$>$ Know the content of the post on October 22: For a given matrix A, find the Reduced Row Echelon Form (RREF) of A, then form the matrix which consists of the pivot columns of A and the matrix which consists of the nonzero rows of the RREF of A. What is the product of these two matrices?
$>$ The transpose of a matrix and its properties.
2.2 The inverse of a matrix. $>$ Know the definition of an invertible matrix and the definition of an inverse of a matrix.
$>$ Know the easy inverses: 2×2 matrices, elementary matrices, product of invertible matrices.
$>$ Know the algorithm for finding A^{-1} and its connection with elementary matrices, see the post on October 25.
> Based on the post on October 25 be able to write an invertible matrix as a product of elementary matrices.
$>$ How to use inverse to solve the equation $A \mathbf{x}=\mathbf{b}$.
$>$ Theorem 7 and its proof.
2.3 Characterization of invertible matrices. Know:
$>$ The statement and the proof of the invertible matrix theorem. (See examples of the proofs that we did in class.)
2.8 Subspaces of \mathbb{R}^{n}. $>$ Know the definition of a subspace of \mathbb{R}^{n}.
$>$ Know that Example 3 gives the most important example of a subspace.
$>$ Know the definition of a basis of a subspace of \mathbb{R}^{n}.
$>$ Know the definition of $\operatorname{Col} A$ (for a given $n \times m$ matrix A) and how to find a basis for $\operatorname{Col} A$.
$>$ Know the definition of $\operatorname{Nul} A$ (for a given $n \times m$ matrix A) and how to find a basis for $\operatorname{Nul} A$.
$>$ Know the definition of Row A (for a given $n \times m$ matrix A) and how to find a basis for Row A. (see the post of November 1)
$>$ Know the post of October 31.
2.9 Dimension and rank. $>$ Know the definition of the dimension of a subspace of \mathbb{R}^{n}.
$>$ Know the definition of the rank of an $m \times n$ matrix A.
$>$ Know that for an $m \times n$ matrix A the dimension of the column space of A equals the dimension of the row space of A.
$>$ The rank theorem for an $m \times n$ matrix A : The dimension of the column space plus the dimension of the null space of A equals the number of columns in A.

