Fall 2019 Math 204 Topics for the second exam

1.9 Matrix of a linear transformations. Know:

- ➤ Definitions of injection (one-to-one) and surjection (onto) for linear transformations and the characterizations in Theorems 11 and 12. Exercises 23-30.
- 2.1 Matrix operations. ≻ Know how to add matrices and multiply matrices with a scalar and properties of these operations.
 - > Know how to multiply two matrices (the definition and row-column rule for the computation).
 - ➤ Know properties of matrix multiplication.
 - > Know the content of the post on October 22: For a given matrix A, find the Reduced Row Echelon Form (RREF) of A, then form the matrix which consists of the pivot columns of A and the matrix which consists of the nonzero rows of the RREF of A. What is the product of these two matrices?
 - \succ The transpose of a matrix and its properties.
- **2.2 The inverse of a matrix.** > Know the definition of an invertible matrix and the definition of an inverse of a matrix.
 - > Know the easy inverses: 2×2 matrices, elementary matrices, product of invertible matrices.
 - > Know the algorithm for finding A^{-1} and its connection with elementary matrices, see the post on October 25.
 - ➤ Based on the post on October 25 be able to write an invertible matrix as a product of elementary matrices.
 - > How to use inverse to solve the equation $A\mathbf{x} = \mathbf{b}$.
 - \succ Theorem 7 and its proof.

2.3 Characterization of invertible matrices. Know:

- ➤ The statement and the proof of the invertible matrix theorem. (See examples of the proofs that we did in class.)
- **2.8 Subspaces of** \mathbb{R}^n . > Know the definition of a subspace of \mathbb{R}^n .
 - \succ Know that Example 3 gives the most important example of a subspace.
 - > Know the definition of a basis of a subspace of \mathbb{R}^n .
 - > Know the definition of $\operatorname{Col} A$ (for a given $n \times m$ matrix A) and how to find a basis for $\operatorname{Col} A$.
 - > Know the definition of Nul A (for a given $n \times m$ matrix A) and how to find a basis for Nul A.
 - > Know the definition of Row A (for a given $n \times m$ matrix A) and how to find a basis for Row A. (see the post of November 1)
 - > Know the post of October 31.

2.9 Dimension and rank. > Know the definition of the **dimension** of a subspace of \mathbb{R}^n .

- > Know the definition of the rank of an $m \times n$ matrix A.
- > Know that for an $m \times n$ matrix A the dimension of the column space of A equals the dimension of the row space of A.
- > The rank theorem for an $m \times n$ matrix A: The dimension of the column space plus the dimension of the null space of A equals the number of columns in A.