Fall 2019 Math 204 Topics for the Final Exam
1.1 Linear systems. > Know the definition of a linear equation and the definition of a linear system;
$>$ Know what is the coefficient matrix and the augmented matrix of a linear system;
$>$ Know what are equivalent linear systems and what are three basic operations which transform a linear system into an equivalent simpler system;
$>$ Know the existence and uniqueness questions for linear system and how to answer them.
1.2 Row reduction, row echelon form (REF) and reduced row echelon form (RREF). $>$ Know the definitions of REF and RREF of a matrix and how to use the Row Reduction Algorithm to transform a matrix to RREF.
$>$ Know the concepts of a pivot position and a pivot column in a matrix and the connection with the basic and free variables of a system.
$>$ Know how to use row reduction to find the general solution of a linear system and how to write this solution in parametric vector form.
$>$ Know the Existence and Uniqueness Theorem (Theorem 2 page 21).
1.3 Vector equations. $>$ Know how to write a linear system as one vector equation.
$>$ It is essential to know how to verify whether row reduction has been performed correctly: The linear relationships among vectors in the given matrix and its RREF are the same.
$>$ Know algebraic operations in the vector space \mathbb{R}^{n}, their geometric illustrations in \mathbb{R}^{2} and \mathbb{R}^{3}.
$>$ Know the concepts of a linear combination of vectors and a span of vectors and the geometric interpretation of a span in \mathbb{R}^{2} and \mathbb{R}^{3}.
1.4 The matrix equation $A \mathrm{x}=\mathrm{b} .>$ Know the definition of matrix-vector product and its basic properties: $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}, A(c \mathbf{u})=c A \mathbf{u}$ (Theorem 5).
$>$ Know the matrix equation, the vector equation and the linear system which have the same solution set (Theorem 3).
$>$ Know four equivalent ways of saying: For every $\mathbf{b} \in \mathbb{R}^{m}$ the equation $A \mathbf{x}=\mathbf{b}$ has a solution (Theorem 4).
1.5 Solutions sets of linear systems. $>$ Know the geometric illustration of the expression $\mathbf{p}+t \mathbf{v}$ where t is an arbitrary scalar and \mathbf{p} and \mathbf{v} are fixed vectors in \mathbb{R}^{n}.
$>$ Know the geometric illustration of the expression $\mathbf{p}+s \mathbf{u}+t \mathbf{v}$ where t and s are arbitrary scalars and \mathbf{p}, \mathbf{u} and \mathbf{v} are fixed vectors in \mathbb{R}^{n}.
$>$ Know how to write a solution of a linear system in parametric vector form.
$>$ Know the relationship between the solution sets of a nonhomogeneous equation $A \mathbf{x}=\mathbf{b}$ and the corresponding homogeneous equation $A \mathbf{x}=\mathbf{0}$ (Theorem 6).
1.7 Linear independence. $>$ Know the definitions of linear independence and linear dependence and how to implement them to decide whether given vectors are linearly dependent or independent.
$>$ Know the meaning of linear independence/dependence in the case of one vector and two vectors.
$>$ Know two simple sufficient conditions for the linear dependence (Theorems 8 and 9).
$>$ Know a characterization of linearly dependent sets (Theorems 7).
1.8 Linear transformations. $>$ Know that in this context the words transformation, mapping and function are synonyms.
$>$ Know the definition of a linear transformation. Let n and m be positive integers. A transformation T defined on \mathbb{R}^{n} and with the values in \mathbb{R}^{m} is linear if the following two conditions are satisfied: $T(\mathbf{x}+\mathbf{y})=T \mathbf{x}+T \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $T(c \mathbf{x})=c T \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$ and all $c \in \mathbb{R}$.
$>$ Know how to associate pictures to formulas and formulas to pictures.
1.9 Matrix of a linear transformations. $>$ Know the most important theorem on the standard matrix for a linear transformation: If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then there exists a unique $m \times n$ matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. In fact, the j th column of A is $T\left(\mathbf{e}_{j}\right)$, where \mathbf{e}_{j} is the j th column of the identity matrix.
$>$ Know how to use the above theorem to get the standard matrices of transformations in Tables 1, 2, 3, 4 in Section 1.9. Also Exercises 1-22 all use this idea.
$>$ In particular, know how to use the above theorem to get the standard matrix for a rotation about the origin in \mathbb{R}^{2} and a reflection through a line passing through the origin in \mathbb{R}^{2} (which are linear transformations of \mathbb{R}^{2}).
$>$ Definitions of injection (one-to-one) and surjection (onto) for linear transformations and the characterizations in Theorems 11 and 12. Exercises 23-30.
2.1 Matrix operations. > Know how to add matrices and multiply matrices with a scalar and properties of these operations.
$>$ Know how to multiply two matrices (the definition and row-column rule for the computation).
$>$ Know properties of matrix multiplication.
$>$ Know the content of the post on October 22: For a given matrix A, find the Reduced Row Echelon Form (RREF) of A, then form the matrix which consists of the pivot columns of A and the matrix which consists of the nonzero rows of the RREF of A. What is the product of these two matrices?
$>$ Know the definition of the transpose of a matrix and its properties.
2.2 The inverse of a matrix. $>$ Know the definition of an invertible matrix and the definition of an inverse of a matrix.
$>$ Know the easy inverses: 2×2 matrices, elementary matrices, product of invertible matrices.
$>$ Know the algorithm for finding A^{-1} and its connection with elementary matrices, see the post on October 25.
$>$ Based on the post on October 25 be able to write an invertible matrix as a product of elementary matrices.
$>$ Know how to use inverse to solve the equation $A \mathbf{x}=\mathbf{b}$.
$>$ Know Theorem 7 and its proof.
2.3 Characterization of invertible matrices. $>$ Know the statement and the proof of the invertible matrix theorem. (See examples of the proofs that we did in class.)
2.8 Subspaces of \mathbb{R}^{n}. $>$ Know the definition of a subspace of \mathbb{R}^{n}.
$>$ Know that Example 3 gives the most important example of a subspace.
$>$ Know the definition of a basis of a subspace of \mathbb{R}^{n}.
$>$ Know the definition of $\operatorname{Col} A$ (for a given $n \times m$ matrix A) and how to find a basis for $\operatorname{Col} A$.
$>$ Know the definition of $\operatorname{Nul} A$ (for a given $n \times m$ matrix A) and how to find a basis for $\operatorname{Nul} A$.
$>$ Know the definition of Row A (for a given $n \times m$ matrix A) and how to find a basis for Row A. (see the post of November 1)
$>$ Know the post of October 31.
2.9 Dimension and rank. $>$ Know the definition of the dimension of a subspace of \mathbb{R}^{n}.
$>$ Know the definition of the rank of an $m \times n$ matrix A.
$>$ Know that for an $m \times n$ matrix A the dimension of the column space of A equals the dimension of the row space of A.
$>$ Know the rank theorem for an $m \times n$ matrix A : The dimension of the column space plus the dimension of the null space of A equals the number of columns in A.
3.1 Introduction to determinants. $>$ Know the definition and the properties (Theorem 1, Theorem 2) of determinants and how to use them to calculate determinants.
3.2 Properties of determinants. $>$ Know how row operations change determinant and how to use this property to calculate determinants.
$>$ Know that a square matrix is invertible if and only if $\operatorname{det} A \neq 0$.
$>$ Know the multiplicative property of determinants $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$ and how to use it to solve problems (Exercises 29, 31).
$>$ Know the linearity property of the determinant function (page 175) and how to use it to calculate determinants.
$>$ Know that $\operatorname{det} A^{T}=\operatorname{det} A$.
3.3 Cramer's rule, volume, and linear transformations. $>$ Know Cramer's rule and how to use it find the unique solution of nonhomogeneous systems with two equations and two unknowns and nonhomogeneous systems with three equations and three unknowns.
$>$ For a square matrix A with $\operatorname{det} A \neq 0$ know how to use cofactors of A to write the formula for A^{-1}; see the post on November 13, 2019.
$>$ Know how to use determinants to calculate areas of parallelograms and triangles and the volumes of parallelepipeds. That is, if A is 2×2 matrix, then the area of the parallelogram determined by the columns of A is $|\operatorname{det}(A)|$. If A is 3×3 matrix, then the volume of the parallelepiped determined by the columns of A is $|\operatorname{det}(A)|$.
4.1 Vector spaces and subspaces. $>$ Know the definition of an abstract vector space; ten axioms: AE (addition exist), AA (addition is associative), AC (addition is commutative), $\mathbf{A Z}$ (addition has zero), AO (addition has opposites), SE (scaling exists), SA (scaling is "associative"), SD (left distributive law), SD (right distributive law), SO (scaling with one).
> Know the definition of a subspace and how to use it; three defining properties of a subspace \mathcal{H} are: SZ $0 \in \mathcal{U}, \mathbf{S A} u+v \in \mathcal{S} A$ whenever $u, v \in \mathcal{U}, \mathbf{S S} \alpha u \in \mathcal{U}$ whenever $u \in \mathcal{U}$ and $\alpha \in \mathbb{R}$
$>$ Know the concept of a span
$>$ Know examples of vector spaces and their subspaces: vector spaces matrices, vector spaces of polynomials and vector spaces of functions
4.2 Null spaces, column spaces and linear transformations. $>$ Know about the null space: the definition, the proof that it is a subspace, how to find a null space of a given matrix, how to write it as a span of vectors, and how to find its basis (this is explained in 4.3)
$>$ Know about the column space: the definition, how to decide whether a given vector is in the column space of a given matrix, and how to find its basis (this is explained in 4.3)
$>$ Know the importance of equalities $\operatorname{Nul} A=\{\mathbf{0}\}$ and $\operatorname{Col} A=\mathbb{R}^{m}$ for a given $m \times n$ matrix A
$>$ Know the definitions of kernel and range of a linear transformation. Exercises 31, 32, 33
4.3 Linearly independent sets: Bases. > Know the definition of linearly independent vectors and how to prove that given vectors are linearly independent; see the post on November 19, 2019
$>$ Know the definition of linearly dependent vectors; the characterization of linearly dependent sets in Theorem 4
$>$ Know the definition of a basis of a vector space and the standard basis for \mathbb{R}^{n} and \mathbb{P}_{n}
$>$ For a given $m \times n$ matrix A know how to find bases for $\operatorname{Nul} A$, Row A, and $\operatorname{Col} A$
> Exercise 23, 24, 34
4.4 Coordinate systems. $>$ For a given vector space \mathcal{V} and its basis \mathcal{B}, know the unique representation theorem, the definition of a coordinate mapping, and the meaning of the symbol $[\mathbf{v}]_{\mathcal{B}}$ for a given vector v.
$>$ The importance of the matrix

$$
P_{\mathcal{B}}=\left[\mathbf{b}_{1} \cdots \mathbf{b}_{n}\right]
$$

for a given basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ for \mathbb{R}^{n} (this is a special change-of-coordinate matrix, more in Section 4.7)
$>$ Theorem 8: Given a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of a vector space \mathcal{V}, the coordinate mapping

$$
\mathbf{v} \mapsto[\mathbf{v}]_{\mathcal{B}}
$$

is an one-to-one linear transformation from \mathcal{V} onto \mathbb{R}^{n}. In other words, the coordinate mapping $\mathbf{v} \mapsto[\mathbf{v}]_{\mathcal{B}}$ is a linear bijection from \mathcal{V} to \mathbb{R}^{n}.
$>$ The coordinate mapping for polynomials, Examples 5 and 6
$>$ Exercises 10, 11, 13
4.5 The dimension of a vector space. > Know Theorem 9: Let p and n be positive integers. Let $\mathcal{B}=$ $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space \mathcal{V}. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ be vectors in \mathcal{V}. If $p>n$, then the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are linearly dependent.
$>$ Know Theorem 10: If a vector space \mathcal{V} has a basis of n vectors, then every basis of \mathcal{V} must consist of n vectors.
$>$ Know the definition of a finite dimensional vector space and the definition of the dimension of a finite dimensional vector space
$>$ Know Theorem 11 and Theorem 12
$>$ For a given $m \times n$ matrix A know how to determine dimensions of $\operatorname{Nul} A$, Row A, and $\operatorname{Col} A$
> Exercise 23
4.6 Rank. $>$ The concept of a row space, Row A, of a given matrix A
$>$ Know Theorem 13: If two matrices A and B are row equivalent, then their row spaces are the same. If B is in row echelon form, then the nonzero rows of B form a basis for the row space of A (which is the same as the row space of B).
$>$ Know the definition of the rank of a matrix
$>$ Know that the nullity of a matrix A is the dimension of $\operatorname{Nul} A$
$>$ Know that the Rank Theorem in the book is more often called the Rank-Nullity theorem. This theorem has three important claims.
> Know The Rank-Nullity Theorem: (1) The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. (2) This common dimension, the rank of A, also equals the number of pivot positions in A. (3) The rank of A and the dimension of $\operatorname{Nul} A$ add up to the number of columns of A. That is

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n
$$

$>$ Know: Both $\operatorname{Nul} A$ and Row A are subspaces of \mathbb{R}^{n}. The only vector which is in both $\operatorname{Nul} A$ and Row A is the zero vector. A union of a basis for $\operatorname{Nul} A$ and a basis for Row A is a basis for \mathbb{R}^{n}.
$>$ Four fundamental subspaces determined by A and relationships among their dimensions.
$>$ Exercises 27-30 among others
4.7 Change of bases (in fact: Change of coordinates). $>$ Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$ be two bases for a vector space \mathcal{V}. Know that the matrix M with the property $[\mathbf{v}]_{\mathcal{C}}=M[\mathbf{v}]_{\mathcal{B}}$ is called the change-of-coordinate matrix from \mathcal{B} to \mathcal{C}. It is denoted $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ and it is calculated as

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{lll}
{\left[\mathbf{b}_{1}\right]_{\mathcal{C}}} & \cdots & \left.\left[\mathbf{b}_{m}\right]_{\mathcal{C}}\right]
\end{array}\right.
$$

$>$ Know that $(\underset{\mathcal{C} \leftarrow \mathcal{B}}{P})^{-1}=\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$
$>$ If the vector space \mathcal{V} is a subspace of \mathbb{R}^{n}, then to determine the vector $\left[\mathbf{b}_{1}\right]_{\mathcal{C}}$ we have to solve the vector equation

$$
x_{1} \mathbf{c}_{1}+\cdots+x_{m} \mathbf{c}_{m}=\mathbf{b}_{1} .
$$

To solve this vector equation we would row reduce the augmented matrix

$$
\left[\begin{array}{lll|l}
\mathbf{c}_{1} & \cdots & \mathbf{c}_{m} & \mathbf{b}_{1}
\end{array}\right] .
$$

Since the given vector equation has a unique solution, the row reduction will give that solution in the last column, that is, in the column after \mid. To get the coordinate vectors $\left[\mathbf{b}_{2}\right]_{\mathcal{C}}, \ldots,\left[\mathbf{b}_{m}\right]_{\mathcal{C}}$ for other vectors in \mathcal{B} we can row reduce

$$
\left[\begin{array}{lll}
\mathbf{c}_{1} & \cdots & \left.\mathbf{c}_{m} \left\lvert\, \begin{array}{lll}
\mathbf{b}_{1} & \cdots & \mathbf{b}_{m}
\end{array}\right.\right] .
\end{array}\right.
$$

The row reduction will result in

$$
\left[\begin{array}{lll|lll}
\mathbf{c}_{1} & \cdots & \mathbf{c}_{m} & \mathbf{b}_{1} & \cdots & \mathbf{b}_{m}
\end{array}\right] \sim \cdots \sim\left[\begin{array}{c|c}
I_{m} & \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} \\
0 & 0
\end{array}\right]
$$

See the post on November 21, 2019.
$>$ In the above row reduction I assumed that $m<n$. If $m=n$, then the zeros in the RREF are not present. We have

$$
\left[\begin{array}{lll|lll}
\mathbf{c}_{1} & \cdots & \mathbf{c}_{n} \mid \mathbf{b}_{1} & \cdots & \mathbf{b}_{n}
\end{array}\right] \sim \cdots \sim\left[\begin{array}{l|c}
I_{n} & \underset{\mathcal{C} \leftarrow \mathcal{B}}{P}
\end{array}\right] .
$$

$>$ Know that there is a special basis of \mathbb{R}^{n}, called the standard basis, which consists of the columns of the identify matrix I_{n}. These vectors are denoted by $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ and the basis consisting of these vectors is denoted by \mathcal{E}. The above considerations show that

$$
\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{lll}
\mathbf{b}_{1} & \cdots & \mathbf{b}_{n}
\end{array}\right]
$$

$>$ Know that in the vector space of polynomials \mathbb{P}_{n} the standard basis consists of monomials $1, x, x^{2}, \ldots, x^{n}$. Denote this basis by \mathcal{M}

$$
\mathcal{M}=\left\{1, x, x^{2}, \ldots, x^{n}\right\}
$$

If we have two bases $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$ for a subspace \mathcal{V} of \mathbb{P}_{n}, then to get $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ we row reduce the matrix
$>$ Exercises 4-10, 13, 14.
5.1 Eigenvectors and eigenvalues. > Know the definition of an eigenvector and eigenvalue. It is a little tricky. Pay attention.
$>$ Know the definition of an eigenspace and how to find an eigenspace corresponding to a given eigenvalue.
$>$ Know that the eigenvalues of a triangular matrix are the entries on its main diagonal.
$>$ Theorem. Eigenvectors corresponding to distinct eigenvalues are linearly independent. (Or, in more formal mathematical language: Let A be an $n \times n$ matrix, let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbb{R}$. If $A \vec{v}_{k}=\lambda_{k} \vec{v}_{k}, \vec{v}_{k} \neq \overrightarrow{0}$ and $\lambda_{j} \neq \lambda_{k}$ for all $j, k=1,2, \ldots, m$, then $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ are linearly independent.
$>$ Know a proof of the above theorem for $m=2$ and $m=3$ vectors.
5.2 The characteristic equation. $>$ Know that λ is an eigenvalue of an $n \times n$ matrix A if and only if $\operatorname{det}(A-$ $\lambda I)=0$
$>$ Know how to calculate $\operatorname{det}(A-\lambda I)$ (this is the characteristic polynomial) for 2×2 matrices and 3×3 matrices, how to find eigenvalues and corresponding eigenvectors. Exercises 1-8, but do more and find eigenvectors as well.
5.3 Diagonalization. $>$ Theorem. (The diagonalization theorem) An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
$>$ Know how to decide whether a given 2×2 and 3×3 matrix A, is diagonalizable or not; if it is diagonalizable, know how to find an invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$.
$>$ Know how to decide whether a triangular matrix is diagonalizable or not. Consider the matrix A in Exercise 18 in Section 5.2 and find h such that the matrix A is diagonalizable.

