MATH 204 Examination November 5, 2021

Name _

GIVE DETAILED EXPLANATIONS FOR YOUR ANSWERS. On in class exams I assign four problems. Each is worth 25 points. I try to assign problems from different topics that we covered. Below are several problems to help you get used to my style of exam questions.

1. Consider 2×3 matrix

$$A = \begin{bmatrix} -1 & 2 & 3 \\ 2 & -4 & 1 \end{bmatrix}$$

and the linear transformation $T\mathbf{x} = A\mathbf{x}$ which is defined on \mathbb{R}^3 and with values in \mathbb{R}^2 . Determine whether T is injective (one-to-one). Justify your answer. If you claim that this transformation is not injective find two distinct vectors \mathbf{x}_1 and \mathbf{x}_2 in \mathbb{R}^3 such that $T\mathbf{x}_1 = T\mathbf{x}_2$. Determine whether T is surjective (onto). Justify your answer. If you claim that T is surjective then for each \mathbf{b} in \mathbb{R}^2 find a vector \mathbf{x} in \mathbb{R}^3 such that $T\mathbf{x} = \mathbf{b}$.

2. Consider 3×4 matrix

$$A = \begin{bmatrix} -1 & 2 & 3 & -6\\ 2 & -4 & 1 & 5\\ 1 & -2 & 2 & 1 \end{bmatrix}$$

and the linear transformation $T\mathbf{x} = A\mathbf{x}$ which is defined on \mathbb{R}^4 and with values in \mathbb{R}^3 . Determine whether T is injective (one-to-one). Justify your answer. Determine whether T is surjective (onto). Justify your answer.

3. In this problem we assume that n is an integer such that n > 1. Let **u** and **v** be vectors in \mathbb{R}^n ; that is **u** and **v** are $n \times 1$ matrices. Consider the following expressions

$$\mathbf{u}^{\!\!\top}\mathbf{v}, \quad \mathbf{v}^{\!\!\top}\mathbf{u}, \quad \mathbf{v}\,\mathbf{u}^{\!\!\top}, \quad \mathbf{u}\,\mathbf{v}^{\!\!\top}.$$

Here, the symbol $\ ^{\top}$ denotes the transpose of a matrix. Give detailed answers to the following questions:

- (a) Is it possible that $\mathbf{u}^{\mathsf{T}}\mathbf{v} = \mathbf{v}^{\mathsf{T}}\mathbf{u}$?
- (b) Is it possible that $\mathbf{u}^{\mathsf{T}}\mathbf{v} = \mathbf{v}\,\mathbf{u}^{\mathsf{T}}$?
- (c) Is it possible that $\mathbf{u} \mathbf{v}^{\mathsf{T}} = \mathbf{v} \mathbf{u}^{\mathsf{T}}$?
- (d) Does the expression $(\mathbf{u} \mathbf{v}^{\top})\mathbf{v}$ make sense? If this expression makes sense, which kind of matrix is it?
- 4. In this problem A is $n \times n$ matrix. Without using the Invertible Matrix Theorem give explanations for the following implications.
 - (a) If the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^n , then there is an $n \times n$ matrix D such that AD = I. Explain why.
 - (b) If there is an $n \times n$ matrix D such that AD = I, then the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^n . Explain why.
 - (c) If there is an $n \times n$ matrix C such that CA = I, then the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. Explain why.

- 5. This problem is about invertible matrices. Let A be an $n \times n$ matrix.
 - (a) State the definition of an invertible matrix.
 - (b) Prove the implication: If A is invertible, then A is row equivalent to I_n .
 - (c) Prove the implication: If A is row equivalent to I_n , then A is invertible.
- 6. For each matrix below determine whether it is invertible or not. Explain your claim. If a matrix is invertible find its inverse.

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix},$$
$$D = \begin{bmatrix} 1 & 0 & 1 \\ -1 & -1 & 1 \\ -1 & 0 & 1 \end{bmatrix}, \qquad E = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1/3 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \qquad F = \begin{bmatrix} 1 & -1/2 \\ -2 & 1 \end{bmatrix}.$$
ensider the matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$

- 7. Consider the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}$.
 - (a) Find A^{-1} . Prove that your answer is correct by calculating AA^{-1} .
 - (b) Use the inverse A^{-1} to find x_1, x_2, x_3 such that

$$\begin{bmatrix} 1\\2\\3 \end{bmatrix} = x_1 \begin{bmatrix} 1\\1\\1 \end{bmatrix} + x_2 \begin{bmatrix} 2\\2\\3 \end{bmatrix} + x_3 \begin{bmatrix} 2\\3\\2 \end{bmatrix}$$

8. Consider the matrices $A = \begin{bmatrix} 1 & -3 \\ -1 & k \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -6 \\ -2 & 3 \end{bmatrix}$

- (a) What values of k (if any) will make A invertible?
- (b) What values of k (if any) will make AB invertible?
- (c) What values of k (if any) will make AB = BA?
- 9. Let A be an unknown square matrix. To A we perform the following row operations:
 - Row 1 gets replaced by $\frac{1}{2}$ times Row 1. $(R_1 \mapsto \frac{1}{2}R_1)$
 - Rows 2 and 3 are swapped $(R_2 \mapsto R_3, R_3 \mapsto R_2)$
 - Row 2 gets replaced by -3 Row 2. $(R_2 \mapsto -3R_2)$
 - Row 3 gets replaced by Row 3 minus 6 Row 2. $(R_3 \mapsto R_3 6R_2)$

The resulting matrix B has determinant det B = 4. What is the determinant of the unknown matrix A.

10. Let A be an unknown 3×3 matrix. To A we perform the following row operations:

- Row 1 gets replaced by $\frac{1}{2}$ times Row 1. $(R_1 \mapsto \frac{1}{2}R_1)$
- Rows 2 and 3 are swapped $(R_2 \mapsto R_3, R_3 \mapsto R_2)$
- Row 2 gets replaced by -3 Row 2. $(R_2 \mapsto -3R_2)$
- Row 3 gets replaced by Row 3 minus 6 Row 2. $(R_3 \mapsto R_3 6R_2)$

The resulting matrix B is the identity matrix. What is the matrix A?

11. Prove that

$$\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} = (y - x)(z - x)(z - y).$$

12. Determine whether it is possible to write the matrix $M = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & -2 \\ 0 & 2 & 1 \end{bmatrix}$ as a product of elementary matrices. If you claim that it is possible to write M as a product of elementary

elementary matrices. If you claim that it is possible to write M as a product of elementary matrices, then find elementary matrices whose product is M. If you claim that it is not possible to write M as a product of elementary matrices, then justify your claim.

14. Determine h such that

$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & 2 & 1 & h \\ 2 & -2 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{vmatrix} = 0.$$

15. (This problem has too many items for all of them to be on an exam.) Consider the 3×5 matrix

	-1	2	3	7	-6]
A =	-2	4	1	4	-7
A =	1	-2	2	3	1

- (a) Row reduce the matrix A to the reduced row echelon form.
- (b) Celebrate your correct row reduction by multiplying the 3×2 matrix which consists of the pivot columns of A by 2×5 matrix which consists of nonzero rows of the reduced row echelon form of A.
- (c) Find a basis for $\operatorname{Nul} A$.
- (d) Find a basis for $\operatorname{Col} A$.
- (e) Express each nonpivot column of A as a linear combination of the basis for $\operatorname{Col} A$ that you found.
- (f) Find a basis for $\operatorname{Row} A$.
- (g) Express each row of A as a linear combination of the basis for Row A that you found.

16. The matrix A and its reduced row echelon form are given below.

$$A = \begin{bmatrix} 1 & 1 & 3 & 2 & 1 & 1 \\ 1 & 2 & 5 & 3 & 0 & 3 \\ 2 & 3 & 8 & 5 & 1 & 4 \\ 2 & 2 & 6 & 4 & 3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 2 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) Find the rank of A and the dimension of the null space of A.
- (b) Find the rank of A^{\top} and the dimension of the null space of A^{\top} .
- (c) Denote the columns of A by \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , \mathbf{a}_4 , \mathbf{a}_5 , \mathbf{a}_6 . Based on the given RREF of A, find a basis for the column space of A. Denote this basis by \mathcal{A} . Calculate the vector $[\mathbf{a}_6]_{\mathcal{A}}$.
- (d) Find a basis for the null space of A.
- 17. Given two bases \mathcal{A} and \mathcal{B} calculate the change of coordinates matrices $\underset{\mathcal{A} \leftarrow \mathcal{B}}{P}$ and $\underset{\mathcal{B} \leftarrow \mathcal{A}}{P}$. There are several examples on the class website. One is with a picture, one is with given vectors.