\qquad

Give detailed explanations for your answers.

On in class exams I assign four problems. Each is worth 25 points.
I try to assign problems from different topics that we covered.
Below are several problems to help you get used to my style of exam questions.

1. Consider 2×3 matrix

$$
A=\left[\begin{array}{rrr}
-1 & 2 & 3 \\
2 & -4 & 1
\end{array}\right]
$$

and the linear transformation $T \mathbf{x}=A \mathbf{x}$ which is defined on \mathbb{R}^{3} and with values in \mathbb{R}^{2}. Determine whether T is injective (one-to-one). Justify your answer. If you claim that this transformation is not injective find two distinct vectors \mathbf{x}_{1} and \mathbf{x}_{2} in \mathbb{R}^{3} such that $T \mathbf{x}_{1}=T \mathbf{x}_{2}$. Determine whether T is surjective (onto). Justify your answer. If you claim that T is surjective then for each \mathbf{b} in \mathbb{R}^{2} find a vector \mathbf{x} in \mathbb{R}^{3} such that $T \mathbf{x}=\mathbf{b}$.
2. Consider 3×4 matrix

$$
A=\left[\begin{array}{rrrr}
-1 & 2 & 3 & -6 \\
2 & -4 & 1 & 5 \\
1 & -2 & 2 & 1
\end{array}\right]
$$

and the linear transformation $T \mathbf{x}=A \mathbf{x}$ which is defined on \mathbb{R}^{4} and with values in \mathbb{R}^{3}. Determine whether T is injective (one-to-one). Justify your answer. Determine whether T is surjective (onto). Justify your answer.
3. In this problem we assume that n is an integer such that $n>1$. Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n}; that is \mathbf{u} and \mathbf{v} are $n \times 1$ matrices. Consider the following expressions

$$
\mathbf{u}^{\top} \mathbf{v}, \quad \mathbf{v}^{\top} \mathbf{u}, \quad \mathbf{v} \mathbf{u}^{\top}, \quad \mathbf{u} \mathbf{v}^{\top}
$$

Here, the symbol ${ }^{\top}$ denotes the transpose of a matrix. Give detailed answers to the following questions:
(a) Is it possible that $\mathbf{u}^{\top} \mathbf{v}=\mathbf{v}^{\top} \mathbf{u}$?
(b) Is it possible that $\mathbf{u}^{\top} \mathbf{v}=\mathbf{v} \mathbf{u}^{\top}$?
(c) Is it possible that $\mathbf{u} \mathbf{v}^{\top}=\mathbf{v} \mathbf{u}^{\top}$?
(d) Does the expression $\left(\mathbf{u} \mathbf{v}^{\top}\right) \mathbf{v}$ make sense? If this expression makes sense, which kind of matrix is it?
4. Let $n \in \mathbb{N}$. In this problem A is an $n \times n$ matrix. Without using the Invertible Matrix Theorem give explanations for the following implications.
(a) If the equation $A \mathbf{x}=\mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^{n}, then there is an $n \times n$ matrix D such that $A D=I$. Explain why.
(b) If there is an $n \times n$ matrix D such that $A D=I$, then the equation $A \mathbf{x}=\mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^{n}. Explain why.
(c) If there is an $n \times n$ matrix C such that $C A=I$, then the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. Explain why.
5. This problem is about invertible matrices. Let A be an $n \times n$ matrix.
(a) State the definition of an invertible matrix.
(b) Prove the implication: If A is invertible, then A is row equivalent to I_{n}.
(c) Prove the implication: If A is row equivalent to I_{n}, then A is invertible.
6. For each matrix below determine whether it is invertible or not. Explain your claim. If a matrix is invertible find its inverse.

$$
\begin{array}{ccc}
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], & B=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], & C=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], \\
D=\left[\begin{array}{rrr}
1 & 0 & 1 \\
-1 & -1 & 1 \\
-1 & 0 & 1
\end{array}\right], & E=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 / 3 & 0 \\
0 & 0 & 5
\end{array}\right], & F=\left[\begin{array}{rr}
1 & -1 / 2 \\
-2 & 1
\end{array}\right] .
\end{array}
$$

7. Consider the matrix $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right]$.
(a) Find A^{-1}. Prove that your answer is correct by calculating $A A^{-1}$.
(b) Use the inverse A^{-1} to find x_{1}, x_{2}, x_{3} such that

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right]+x_{3}\left[\begin{array}{l}
2 \\
3 \\
2
\end{array}\right]
$$

8. Consider the matrices $A=\left[\begin{array}{rr}1 & -3 \\ -1 & k\end{array}\right]$ and $B=\left[\begin{array}{rr}4 & -6 \\ -2 & 3\end{array}\right]$
(a) What values of k (if any) will make A invertible?
(b) What values of k (if any) will make $A B$ invertible?
(c) What values of k (if any) will make $A B=B A$?
9. Let A be an unknown square matrix. To A we perform the following row operations:

- Row 1 gets replaced by $\frac{1}{2}$ times Row $1 .\left(R_{1} \mapsto \frac{1}{2} R_{1}\right)$
- Rows 2 and 3 are swapped ($R_{2} \mapsto R_{3}, R_{3} \mapsto R_{2}$)
- Row 2 gets replaced by -3 Row 2. $\left(R_{2} \mapsto-3 R_{2}\right)$
- Row 3 gets replaced by Row 3 minus 6 Row 2. $\left(R_{3} \mapsto R_{3}-6 R_{2}\right)$

The resulting matrix B has determinant $\operatorname{det} B=4$. What is the determinant of the unknown matrix A.
10. Let A be an unknown 3×3 matrix. To A we perform the following row operations:

- Row 1 gets replaced by $\frac{1}{2}$ times Row 1. $\left(R_{1} \mapsto \frac{1}{2} R_{1}\right)$
- Rows 2 and 3 are swapped $\left(R_{2} \mapsto R_{3}, R_{3} \mapsto R_{2}\right)$
- Row 2 gets replaced by -3 Row 2. $\left(R_{2} \mapsto-3 R_{2}\right)$
- Row 3 gets replaced by Row 3 minus 6 Row 2. $\left(R_{3} \mapsto R_{3}-6 R_{2}\right)$

The resulting matrix B is the identity matrix. What is the matrix A ?
11. Prove that

$$
\left|\begin{array}{lll}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right|=(y-x)(z-x)(z-y)
$$

12. Determine whether it is possible to write the matrix $M=\left[\begin{array}{rrr}1 & 0 & 1 \\ -2 & 1 & -2 \\ 0 & 2 & 1\end{array}\right]$ as a product of elementary matrices. If you claim that it is possible to write M as a product of elementary matrices, then find elementary matrices whose product is M. If you claim that it is not possible to write M as a product of elementary matrices, then justify your claim.
13. Calculate the determinant $\left|\begin{array}{llll}1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 5 & 0 & 6 & 7 \\ 0 & 0 & 8 & 9\end{array}\right|$.
14. Determine h such that

$$
\left|\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 2 & 1 & h \\
2 & -2 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right|=0
$$

15. (This problem has too many items for all of them to be on an exam.) Consider the 3×5 matrix

$$
A=\left[\begin{array}{rrrrr}
-1 & 2 & 3 & 7 & -6 \\
-2 & 4 & 1 & 4 & -7 \\
1 & -2 & 2 & 3 & 1
\end{array}\right]
$$

(a) Row reduce the matrix A to the reduced row echelon form.
(b) Celebrate your correct row reduction by multiplying the 3×2 matrix which consists of the pivot columns of A by 2×5 matrix which consists of nonzero rows of the reduced row echelon form of A.
(c) Find a basis for $\operatorname{Nul} A$.
(d) Find a basis for $\operatorname{Col} A$.
(e) Express each nonpivot column of A as a linear combination of the basis for $\operatorname{Col} A$ that you found.
(f) Find a basis for Row A.
(g) Express each row of A as a linear combination of the basis for Row A that you found.
16. The matrix A and its reduced row echelon form are given below.

$$
A=\left[\begin{array}{rrrrrr}
1 & 1 & 3 & 2 & 1 & 1 \\
1 & 2 & 5 & 3 & 0 & 3 \\
2 & 3 & 8 & 5 & 1 & 4 \\
2 & 2 & 6 & 4 & 3 & 1
\end{array}\right] \sim \ldots \quad \sim\left[\begin{array}{rrrrrr}
1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 2 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find the rank of A and the dimension of the null space of A.
(b) Find the rank of A^{\top} and the dimension of the null space of A^{\top}.
(c) Denote the columns of A by $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}, \mathbf{a}_{6}$. Based on the given RREF of A, find a basis for the column space of A. Denote this basis by \mathcal{C}. Calculate the vector $\left[\mathbf{a}_{6}\right]_{\mathcal{C}}$.
(d) Express the first row of A as a linear combination of the nonzeor rows of the RREF of A.
(e) Find a basis for the null space of A.
17. Given two bases \mathcal{A} and \mathcal{B} calculate the change of coordinates matrices $\underset{\mathcal{A} \leftarrow \mathcal{B}}{P}$ and $\underset{\mathcal{B} \leftarrow \mathcal{A}}{P}$. There are several examples on the class website. One is with a picture, one is with given vectors.
18. Let

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

and let

$$
\mathcal{H}=\operatorname{Span} \mathcal{B}
$$

(a) Prove that \mathcal{B} is a basis for \mathcal{H}.
(b) Find the basis \mathcal{C} of \mathcal{H} such that

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right] .
$$

