5

Job 1 goes to one of five, Job 2 goes to one of five, Job 3 goes to one of five. By product rule 5*5*5 = 125

Problem 20

```
Binomial[11 + 3, 3]
3 6 4
Length[Select[
    Flatten[Table[{x, y, z}, {x, 0, 11}, {y, 0, 11}, {z, 0, 11}], 2], (Apply[Plus, #] < 12) &]]
364
```

23
(* We are asked how many teams of two can be formed by 12 students. The teams have different colors. *)
(* There are two ways to think about this. First, team the students following the permutations. But, this would count each team twice. *)
$\frac{12!}{(2!)^{6}}$
7484400
(* The second way is by product
rule: There are 12 choose 2 ways of selecting the red team,
there are 10 choose 2 ways of selecting green team,
there are 8 choose 2 ways of selecting blue team, ... *)
Product [Binomial[2k, 2], \{k, 6, 1, -1\}]
7484400

Problem 25

Binomial[24, 5] - 6 Binomial[14, 5]
30492

Length[Select[IntegerDigits[\#] \& /@Range[999999], (Apply[Plus, \#] == 19) \&]] 30492

- How about the sum is $\mathbf{2 0}$

```
Length[Select[IntegerDigits[#] & /@ Range[999999],(Apply[Plus, #] == 20) &]]
```

35127

Binomial[25, 5] - (6 Binomial[15, 5] - Binomial[6, 2])
35127

- How about the sum is 21

Length[Select[IntegerDigits[\#] \& /@Range[999999], (Apply[Plus, \#] =: 21) \&]] 39662

Binomial[26, 5] - (6 Binomial[16, 5]-2 Binomial[6, 2])
39602

25

(* this is a wallet problem, but we are permited to put only digits 0,1,...,
9 in six boxes. First we calculate all possibilities with nonnegative integers, then subtract those that contain 10 or larger integers. Fortunately
10 or larger number can appear only at one spot *)
Binomial[24, 5] - 6 Binomial[14, 5]
30492

26

(* total sum to 13 *)
Binomial[13 + 5, 5]-6 Binomial[3+5,5]
8232
(* no 9 s *)
Binomial[13 + 5, 5] - 6 Binomial[4 +5, 5]
7812
(* the difference is one nine *)
(Binomial[13 + 5, 5] - 6 Binomial[3 + 5, 5]) - (Binomial[13 +5, 5] - 6 Binomial[4 +5, 5]) 420
(* different logic how meny with only 9 at first *)
6 Binomial[4 + 4, 4]
420

Length [
Select[IntegerDigits[\#] \& /@Range[999999], (And[Apply[Plus, \#] == 13, Max[\#] =: 9]) \&]]
420

27

```
Binomial[50 + 9, 9]
```

12565671261

33
$\{0, R, 0, N, 0\}$
Binomial[3, 1] (* one letter *) + (3*2 + 1) (* two letters *) + (3 * 2 * 1 + Binomial[3, 2] * 2 +1) (* three letters *) + (Binomial[4, 2] * 2 + Binomial[4, 3] *2) (* four letters *) $+\frac{5!}{3!}$

Problem 33

```
3 (* words with one letter *) +
    (* words with two letters *) +
    1 (* two Os *) +
    2*2(* one 0 *) +
    2 (* no Os *) +
    (* words with three letters *) +
    1 (* three Os *) +
    Binomial[3, 2] * 2 (* two Os *) +
    Binomial[3, 1] * 2 (* one 0 *) +
    (* words with four letters *) +
        Binomial[4, 3] *2 (* three Os *) +
    Binomial[4, 2] *2 (* two Os *) +
    (* words with five letters *)
    Binomial[5, 3] 2
6 3
5!/3!
20
Binomial[5, 3] Binomial[2, 1]
20
```


34

How many strings of five and more characters can be formed from the letters

$$
\{s, e, e, r, e, s, s\}
$$

using 7 characters

$$
\frac{7!}{3!3!}
$$

140

Using 6 characters we have the same number of strings since droping the last letter is a bijection between the set of all strings with 7 characters and the set of all strings with 6 characters

However, we can proceed and count them differently: (we use all but, s, e, r, respectively)

```
6!
140
```

Using five characters we have to go through all the cases: $\operatorname{drop}\{\mathrm{e}, \mathrm{e}\}$, $\operatorname{drop}\{\mathrm{e}, \mathrm{r}\}$, $\operatorname{drop}\{\mathrm{e}, \mathrm{s}\}$, drop $\{\mathrm{r}, \mathrm{s}\}, \operatorname{drop}\{\mathrm{s}, \mathrm{s}\}$

$$
\frac{5!}{1!3!}+\frac{5!}{2!3!}+\frac{5!}{2!2!}+\frac{5!}{3!2!}+\frac{5!}{3!1!}
$$

90

From the strings with 5 characters we can calculate the number of strings with 7 characters counting the number of possible completions:

$$
\begin{aligned}
& \frac{5!}{1!3!} * 1+\frac{5!}{2!3!} * 2+\frac{5!}{2!2!} * 2+\frac{5!}{3!2!} * 2+\frac{5!}{3!1!} * 1 \\
& 140
\end{aligned}
$$

39

We have to make 12 steps: 4 in x drection, 3 in y direction and 5 in z direction. This is exactly the same as counting the number of strings of 12 characters $\{x, x, x, x, y, y, y, z, z, z, z, z\}$

$$
\frac{(4+3+5)!}{3!4!5!}
$$

27720

$$
\frac{(3+3+3)!}{3!3!3!}
$$

1680

