Problem 19

```
Clear[wa, n];
wa[0] = 1; wa[1] = 2; wa[2] = 4; wa[3] = 8; wa[4] = 16;
wa[n_] := wa[n] = 2 * wa[n-1] + wa[n-5]
Table[wa[k], {k, 1, 10}]
{2, 4, 8, 16, 33, 68, 140, 288, 592, 1217}
```


Problem 22

```
{{1, 3}, {1, 2, 3}} (* n = 3 ; 2^(3-2) *)
{{1, 4}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}} (* n = 4; 2^(4-2) *)
{{1, 5}, {1, 2, 5}, {1, 3, 5}, {1, 2, 3, 5},
    {1,4, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {1, 2, 3, 4, 5}}
{{1,6},{1, 2, 6}, {1,3,6},{1, 2, 3, 6}, {1, 4, 6}, {1, 2, 4, 6},
    {1,3,4, 6}, {1, 2, 3, 4, 6}, {1, 5, 6}, {1, 2, 5, 6}, {1, 3, 5, 6},
    {1, 2, 3, 5, 6}, {1,4,5,6}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}}
```

This can be explained by bit strings of length $n-2$. The positions belong to the numbers $2, \ldots, n-1$. 1-s will tell you which numbers to include in the sequence.

```
Clear[ns, n];
```

ns[2] = 1; ns[3] = 2; ns[n_] := ns[n] = $2 \mathrm{~ns}[\mathrm{n}-1$]

Table[ns[k], \{k, 2, 10\}]
$\{1,2,4,8,16,32,64,128,256\}$

Problem 23

The problem is to find a recurrence realtion for the number of bit strings of length n which contain at least one occurence of the string 00 .

Easily we calculate $a_{0}=0, a_{1}=0, a_{2}=1, a_{3}=3$. Let $n>3$. The recursion is based on the position of the first occurrence of 00 . There are $2 a_{n-1}$ bit strings of length n in which the first occurence at the position $k, k \leq n-2$. If the first occurence of 00 is at the position $n-1$, then the bit at the position $n-2$ is 1 and there are no occurences of 00 among the first $n-3$ bits. It has been calculated that there are Fibonacci[$n-1$] bit strings of length $n-3$ which do not have any occurence of 00 . Thus the recursion is

```
Clear[sb]; sb[0] = 0; sb[1] = 0; sb[n_] := sb[n] = 2 * sb[n-1] + Fibonacci[n - 1]
Table[sb[k], {k, 0, 10}]
{0, 0, 1, 3, 8, 19, 43, 94, 201, 423, 880}
Table[2^k - Fibonacci[k + 2], {k, 0, 10}]
{0, 0, 1, 3, 8, 19, 43, 94, 201, 423, 880}
Table[Length[Select[BiSt[n], MemberQ[Partition[#, 2, 1], {0, 0}] &]], {n, 2, 10}]
{1, 3, 8, 19, 43, 94, 201, 423, 880}
? Fib*
Fibonacci[n] gives the nth Fibonacci number. Fibonacci[
        n, x] gives the nth Fibonacci polynomial, using x as the variable. More...
Table[{Length[Select[BiSt[n], Not[MemberQ[Partition[#, 2, 1], {0, 0}]] &]],
    Fibonacci[n + 2]}, {n, 2, 10}]
{{3, 3},{5, 5},{8, 8}, {13, 13}, {21, 21}, {34, 34}, {55, 55}, {89, 89}, {144, 144}}
```

Easily we calculate $a_{0}=0, a_{1}=0, a_{2}=1, a_{3}=3$. Let $n>3$. The recursion is based on the starting two bits. They can be 00,01 , or 1 . There are three disjoint sets determined by these beginings. The cardinality of the first set is 2^{n-2}, the second set is a_{n-2} and the third set is a_{n-1}.

Problem 26

The problem is to find a recurrence realtion for the number of bit strings of length n which contain at least one occurence of the string 01 .

Easily we calculate $a_{0}=0, a_{1}=0, a_{2}=1, a_{3}=4$. Let $n>3$. The recursion is based on the position of the first occurrence of 01 . There are $2 a_{n-1}$ bit strings of length n in which the first occurence at the position $k, k \leq n-2$. If the first occurence of 01 is at the last two bits, then the first $n-2$ positions do not include any 01 -s. There are $n-1$ such bit strings: all $0-s$, 1 -s up to k, then zeros, $k=1, \ldots, n-2$. Thus the recursion is

```
Clear[sa, n];
sa[0] = 0; sa[1] = 0; sa[n_] := sa[n] = 2 * sa[n-1] + n-1
Table[sa[k], {k, 0, 10}]
{0, 0, 1, 4, 11, 26, 57, 120, 247, 502, 1013}
```

```
Table[2^n-(n+1), {n, 0, 10}]
```

$$
\{0,0,1,4,11,26,57,120,247,502,1013\}
$$

Or one can reason based on the ending bit. There are a_{n-1} strings ending with 0 , there are 2^{n-2} strings ending with 01 . How many strings end with 11 ? There are a_{n-2} strings ending with 11 , but these are not all. There are $n-2$ strings of the form $00 . .011,100 . .011$, and so on to, $11 \ldots 1011$. The listed sets are disjoint, so

```
Clear[sb, n];
sb[0] = 0; sb[1] = 0; sb[n_]:= sb[n] = sb[n-1] + 2n-2 + sb[n-2] + n-2
```

Table[sb[k], \{k, 0, 10\}]
$\{0,0,1,4,11,26,57,120,247,502,1013\}$
Or one can reason by building n-th from the previous. There are $2 * a_{n-1}$ bitstrings that have 01 in the first n bits. There are $2^{n-2}-a_{n-2}$ bitstrings with no 01 in the first $n-2$ bits. End them with 01 . These sets are disjoint.

Clear [sc, n];
$\operatorname{sc}[0]=0 ; \operatorname{sc}[1]=0 ; \operatorname{sc}\left[n_{-}\right]:=\operatorname{sc}[n]=2 * \operatorname{sc}[n-1]+2^{n-2}-\operatorname{sc}[n-2]$
Table[sc[k], \{k, 0, 10\}]
$\{0,0,1,4,11,26,57,120,247,502,1013\}$

- Testing

```
bits8 = PadLeft[#, 8] & /@ Table[IntegerDigits[k, 2], {k, 0, 2^8-1}];
Length[bits8]
256
MemberQ[Partition[bits8[5], 2, 1], {0, 1}]
True
BiSt[n_] := PadLeft[#, n] & /@ Table[IntegerDigits[k, 2], {k, 0, 2^n-1}]
Length[Select[BiSt[4], MemberQ[Partition[#, 2, 1], {0, 1}] &]]
1 1
Length[Select[BiSt[8], MemberQ[Partition[#, 2, 1], {0, 1}] &]]
247
Length[Select[BiSt[10], MemberQ[Partition[#, 2, 1], {0, 1}] &]]
1 0 1 3
```

Select[BiSt[4], MemberQ[Partition[\#, 2, 1], \{0, 1\}] \&]

$$
\begin{aligned}
& \{\{0,0,0,1\},\{0,0,1,0\},\{0,0,1,1\},\{0,1,0,0\},\{0,1,0,1\}, \\
& \{0,1,1,0\},\{0,1,1,1\},\{1,0,0,1\},\{1,0,1,0\},\{1,0,1,1\},\{1,1,0,1\}\}
\end{aligned}
$$

Table[Length[Select[BiSt[n], MemberQ[Partition[\#, 2, 1], \{0, 1\}] \&]], \{n, 2, 10\}] $\{1,4,11,26,57,120,247,502,1013\}$

27

Count the number of ways to climb n stairs if we can take either 1 or 2 stairs at the time.

For example 3 stairs:

$$
\{\{1,2\},\{2,1\},\{1,1,1\}\}
$$

or 4 stairs

```
{{1, 1, 2}, {2, 2}, {1, 2, 1}, {2, 1, 1}, {1, 1, 1, 1}}
Clear[st]; st[1] = 1; st[2] = 2; st[n_] := st[n] = st[n-1] + st[n-2]
Table[st[k], {k, 1, 20}]
{1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946}
```


29

$\mathrm{a} 0=1 ; \mathrm{a} 1=3 ; \mathrm{a} 2=8 ;$

$$
\{\},\{0\},\{1\},\{2\}\}
$$

```
Length[{{1, 0}, {2, 0}, {0, 1}, {0, 2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}}]
```

8

Split the set of all ternary strings of length n with no consecutive 0 s into disjoint subsets: beginning with 1 , begining with 2 and beginning with 0 . How many of each?

```
Clear[ts]; ts[0] = 1; ts[1] = 3; ts[n_] := ts[n] = 2*ts[n-1] + 2*ts[n-2]
```

Table[ts[k], \{k, 1, 10\}]

$$
\{3,8,22,60,164,448,1224,3344,9136,24960\}
$$

