MATH 209

Problem 1. Recall that the Fibonacci sequence is defined as

$$
f_{0}=0, \quad f_{1}=1, \quad f_{n+1}=f_{n}+f_{n-1}, \quad n \in \mathbb{Z}_{+} .
$$

Recall that the Golden ratio ϕ is a positive solution of the equation $\phi^{2}=\phi+1$.
(a) Prove that $\psi^{2}=\psi+1$ if and only if for all $n \in \mathbb{Z}_{+}$we have $\psi^{n}=f_{n-1}+\psi f_{n}$.
(b) Prove that for all $n \in \mathbb{Z}_{+}$we have $f_{n}=\frac{\phi^{n}-(-\phi)^{-n}}{\phi+\phi^{-1}}$. (You can use (a) here. Notice that in (a) you have proved two if and only if statements.)

Problem 2. Consider the recursion

$$
p_{0}=1, \quad p_{n+1}=\sum_{k=0}^{n} p_{k}, \quad n \in \mathbb{N} .
$$

Discover a simple formula for p_{n} (a formula that will express p_{n} as a function of n only) and prove it. A formula that works for all $n \in \mathbb{Z}_{+}$is sufficient.

Problem 3. Let $n \in \mathbb{Z}_{+}$. Denote by g_{n} the number of bit strings of length n with no consecutive 0 s.
(a) Calculate g_{1}, g_{2}, g_{3} and g_{4}. You can proceed with g_{5}, g_{6}, \ldots. The pattern should be clear.
(b) Based on (a) it should be clear what is the recursive formula for the numbers $g_{n}, n \in \mathbb{Z}_{+}$. State this formula clearly.
(c) Prove the formula in (b).

Problem 4. Let $p \rightarrow q$ be an implication. We will call this implication "the original implication". State clearly what is the contrapositive, what is the converse and what is the inverse of the original implication. In each case give a formula for the implication. The formula should be an implication using two of the propositions $p, q, \neg p, \neg q$.
Decide (and explain how you decided) what is:

> the contrapositive of the converse of the inverse of the contrapositive of the inverse of the converse of the inverse of the contrapositive of the inverse of the contrapositive of the converse of the inverse of the converse of the contrapositive of the inverse of the converse of the contrapositive

For the full credit you should come up with a universal rule how to decide what is the result of any statement similar to the boxed statement above.

Problem 5. This problem is inspired by Problem 42 in Section 4.3.
(a) In Problem 42 you are asked to find the number of different ways in which a horse race with 4 horses can finish if ties are possible. Let us call this number R_{4}. Before finding R_{4}, find the numbers R_{1}, R_{2} and R_{3}; that is, replace 4 horses in Problem 42 by 1 horse, 2 horses and 3 horses. Now, finding R_{4} will be easier. By definition set $R_{0}=1$.
(b) The goal here is to calculate $R_{5}, R_{6}, R_{7}, R_{8}$, and so on. Proceeding like in (a) would be a tedious task. I hope that you can discover a recursive formula that expresses R_{n+1} as a function of $R_{0}, R_{1}, \ldots, R_{n}$.
Hint: Let n and k be integers, $n>k$. Think how the number of different finishes of a race with k horses reflects in the number of finishes in a race with n horses. Or, with specific numbers; how the number of finishes of the races with 5 horses $\left(R_{5}\right)$ relates to the number of finishes of the races with 4 horses $\left(R_{4}\right)$, with 3 horses $\left(R_{3}\right)$, with 2 horses $\left(R_{2}\right)$, with 1 horse (R_{1}) and with 0 horses $\left(R_{0}\right)$.

Problem 6. Let $n \in \mathbb{Z}_{+}$and $n \geq 2$. This problem is about coloring a square (chess-like) board consisting of n rows and n columns for a total of n^{2} squares. We will deal with only two and three colors. Each small square will be colored by one color. Similar to the chess board, just with more variety of patterns. Colors will be abbreviated as B for black, W for white and G for gray.
If $k \in\{1, \ldots, n\}$ and $\alpha \in\{B, W, G\}$ is a color, we denote by $C(k, \alpha)$ the number of squares in row k which are colored with color α. The function $C(k, \alpha)$ takes values in the set $\{0,1, \ldots, n\}$. In fact, for a fixed coloring of an $n \times n$ board with three colors $\{B, W, G\}$ we have

$$
C:\{1, \ldots, n\} \times\{B, W, G\} \rightarrow\{0,1, \ldots, n\} .
$$

In words, C is a function from the Cartesian product $\{1, \ldots, n\} \times\{B, W, G\}$ to the set $\{0,1, \ldots, n\}$. As a practice with the function C understand that for the standard chessboard the following statement is true:

$$
\forall k \in\{1, \ldots, 8\} \quad \forall \alpha \in\{B, W\} \quad C(k, \alpha)=4
$$

(a) In this item we deal with two colors $\{B, W\}$ and n is an arbitrary integer greater than 1 . Prove that there exists a coloring of an $n \times n$ board such that the following statement is true:

$$
\forall j \in\{1, \ldots, n\} \quad \forall k \in\{1, \ldots, n\} \quad \forall \alpha \in\{B, W\} \quad j \neq k \Rightarrow C(j, \alpha) \neq C(k, \alpha) .
$$

(b) In this item we deal with three colors $\{B, W, G\}$ and $n=3$. Prove that a 3×3 board can be colored with three colors in such a way that the following statement is true:

$$
\forall j \in\{1,2,3\} \quad \forall k \in\{1,2,3\} \quad \forall \alpha \in\{B, W, G\} \quad j \neq k \Rightarrow C(j, \alpha) \neq C(k, \alpha)
$$

(c) In this item we deal with three colors $\{B, W, G\}$ and $n>3$. Prove that for an arbitrary $n \times n$ board and an arbitrary coloring of this board with three colors the following statement is true

$$
\exists j \in\{1, \ldots, n\} \quad \exists k \in\{1, \ldots, n\} \quad \exists \alpha \in\{B, W, G\} \quad j \neq k \wedge C(j, \alpha)=C(k, \alpha) .
$$

(In the above logical formulas I used the symbol \Rightarrow to denote the implication. Recall that the notation used in the book is \rightarrow. I explained why \Rightarrow is preferable on the class website.)

