The Axioms for the Integers

Before stating the axioms for \mathbb{Z} we make several comments about the notation.
Our textbook uses \rightarrow to denote the implication, that is $p \rightarrow q$ means " p implies q ". Another common notation for the implication is \Rightarrow. It seems more appropriate to use \Rightarrow here since we use \rightarrow to denote a function; like in $f: A \rightarrow B$; meaning that f is a function defined on A with the values in B.

In the axioms we use three other logical operators learned in Section 1.1: the conjunction (\wedge), the disjunction (\vee) and the exclusive disjunction (\oplus).

Axioms 1 and 6 below claim the existence of two functions defined on $\mathbb{Z} \times \mathbb{Z}$; the function $+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$, the addition, and the function $\cdot: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$, the multiplication. It is common to denote the value of + at a pair $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ by $a+b$. It is also common to denote the value of . at a pair $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ by $a \cdot b$ which is almost always abbreviated as $a b$.

Axiom 1 (AE). $\exists+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$
Axiom 2 (AA). $\forall a \in \mathbb{Z} \forall b \in \mathbb{Z} \forall c \in \mathbb{Z} \quad a+(b+c)=(a+b)+c$
Axiom 3 (AC). $\forall a \in \mathbb{Z} \forall b \in \mathbb{Z} \quad a+b=b+a$
Axiom 4 (AZ). $\exists 0 \in \mathbb{Z} \forall a \in \mathbb{Z} \quad 0+a=a$
Axiom 5 (AO). $\forall a \in \mathbb{Z} \exists x \in \mathbb{Z} \quad a+x=0$
Axiom 6 (ME). $\exists \cdot: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$
Axiom 7 (MA). $\forall a \in \mathbb{Z} \forall b \in \mathbb{Z} \forall c \in \mathbb{Z} \quad a(b c)=(a b) c$
Axiom 8 (MC). $\forall a \in \mathbb{Z} \forall b \in \mathbb{Z} \quad a b=b a$
Axiom 9 (MO). $\exists 1 \in \mathbb{Z} \quad(1 \neq 0) \wedge(\forall a \in \mathbb{Z} \quad 1 \cdot a=a)$
Axiom 10 (MZ). $\forall a \in \mathbb{Z} \forall b \in \mathbb{Z} \quad a b=0 \Rightarrow(a=0) \vee(b=0)$
Axiom 11 (DL). $\forall a \in \mathbb{Z} \forall b \in \mathbb{Z} \forall c \in \mathbb{Z} \quad a(b+c)=a b+a c$
Axiom 12 (OE). $\forall a \in \mathbb{Z} \forall b \in \mathbb{Z} \quad(a<b) \oplus(a=b) \oplus(b<a)$
Axiom 13 (OT). $\forall a \in \mathbb{Z} \forall b \in \mathbb{Z} \forall c \in \mathbb{Z} \quad(a<b) \wedge(b<c) \Rightarrow a<c$
Axiom 14 (OA). $\forall a \in \mathbb{Z} \forall b \in \mathbb{Z} \forall c \in \mathbb{Z} \quad a<b \Rightarrow a+c<b+c$
Axiom 15 (OM). $\forall a \in \mathbb{Z} \forall b \in \mathbb{Z} \forall c \in \mathbb{Z} \quad(a<b) \wedge(0<c) \Rightarrow a c<b c$
Axiom $16(\mathrm{WO}) .(S \subseteq \mathbb{Z}) \wedge(S \neq \emptyset) \wedge(\forall x \in S \quad 0<x) \Rightarrow(\exists m \in S \forall x \in S(m<x) \oplus(m=x))$
Explanation of abbreviations: AE - addition exists, AA - addition is associative, AC - addition is commutative, AZ - addition has zero, AO - addition has opposites, ME - multiplication exists, MA - multiplication is associative, MC - multiplication is commutative, MO - multiplication has one, MZ - multiplication respects zero, DL - distributive law, OE - order exists, OT - order is transitive, OA - order respects addition, OM - order respects multiplication, WO - the well-ordering axiom.

