Proof of the principle of mathematical induction

First recall the well-ordering axiom:
Axiom $16(\mathrm{WO}) . \quad(S \subseteq \mathbb{Z}) \wedge(S \neq \emptyset) \wedge(\forall x \in S \quad 0<x) \Rightarrow(\exists m \in S \forall x \in S \quad m \leq x)$

In the above statement of Axiom 16 we used a common convention that the exclusive disjunction $(m<x) \oplus(m=x)$ is abbreviated as $m \leq x$.

In the next theorem the universe of discourse is the set \mathbb{Z}_{+}of positive integers.
Theorem 1. Let $P(n)$ be a propositional function involving a positive integer n. Then

$$
P(1) \wedge(\forall k(P(k) \Rightarrow P(k+1))) \Rightarrow \forall n P(n)
$$

Proof. We will prove the contrapositive:

$$
\begin{equation*}
\exists j \neg P(j) \Rightarrow \neg P(1) \vee(\exists k(P(k) \wedge \neg P(k+1))) \tag{1}
\end{equation*}
$$

Assume $\exists j \neg P(j)$. That is, assume that there exists $j \in \mathbb{Z}_{+}$such that $\neg P(j)$. Now consider the set

$$
S=\left\{n \in \mathbb{Z}_{+} \mid \neg P(n)\right\} .
$$

Clearly $S \subseteq \mathbb{Z}_{+}$and $j \in S$. Therefore $S \subseteq \mathbb{Z}$ and $S \neq \emptyset$. Since $S \subseteq \mathbb{Z}_{+}$we have $\forall x \in S \quad 0<x$. Hence

$$
(S \subseteq \mathbb{Z}) \wedge(S \neq \emptyset) \wedge(\forall x \in S \quad 0<x)
$$

is true. By the well-ordering axiom we conclude

$$
\begin{equation*}
\exists m \in S \forall x \in S m \leq x \tag{2}
\end{equation*}
$$

Next we make two observations about the proposition (2). First, we notice that the proposition

$$
\forall x \in S \quad m \leq x
$$

can is equivalent to

$$
\forall x \quad x \in S \Rightarrow m \leq x
$$

which is further equivalent to

$$
\forall x \quad x<m \Rightarrow x \notin S .
$$

Thus (2) is equivalent to

$$
\begin{equation*}
\exists m \in S \quad \forall x(x<m \Rightarrow x \notin S) \tag{3}
\end{equation*}
$$

Second, we notice that $m \in \mathbb{Z}_{+}$. Therefore, $(m=1) \vee(1<m)$. In other words, there are two cases for m : either $m=1$ or $m>1$. Consider these two cases separately.
Case 1. Assume $m=1$. Then, since $m=1 \in S$, we have that $\neg P(1)$ is true. Consequently,

$$
\neg P(1) \vee(\exists k(P(k) \wedge \neg P(k+1)))
$$

is true. Thus, we have proved the implication (1) in this case.
Case 2. Assume $m>1$. Then $m-1>0$ and thus $m-1 \in \mathbb{Z}_{+}$. Define $k=m-1$. Then $k \in \mathbb{Z}_{+}$. Further, since $k<m$, (3) implies $k \notin S$. Since $n \in S$ is equivalent to $\left(n \in \mathbb{Z}_{+}\right) \wedge(\neg P(n)), k \notin S$ is equivalent to $\left(k \notin \mathbb{Z}_{+}\right) \vee P(k)$. Since $k \in \mathbb{Z}_{+}$, the last disjunction implies that $P(k)$ is true. Recall that $k+1=m \in S$. Hence $\neg P(k+1)$ is true. Thus we just proved that

$$
\exists k(P(k) \wedge \neg P(k+1))
$$

Consequently,

$$
\neg P(1) \vee(\exists k(P(k) \wedge \neg P(k+1)))
$$

is true. Thus, we have proved the implication (1) in Case 2, as well. This completes the proof.

