The Axioms for the Integers

In the axioms below we use the standard notation for logical operators: the conjunction is \wedge , the disjunction is \vee , the exclusive disjunction is \oplus , the implication is \Rightarrow , the universal quantifier is \forall , the existential quantifier is \exists .

We also use the standard set notation: the set membership \in , the subset \subseteq , the equality =, the set difference \setminus and the Cartesian product \times . For singleton sets instead of writing $\{a\} = \{b\}$ we write a = b.

The notation $f: A \to B$ stands for a function f which is defined on a set A with the values in B.

Axiom 2 below establishes the existence of the addition function defined on $\mathbb{Z} \times \mathbb{Z}$ with the values in \mathbb{Z} . It is common to denote the value of + at a pair $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ by a + b.

Axiom 7 establishes the existence of the multiplication function defined on $\mathbb{Z} \times \mathbb{Z}$ with the values in \mathbb{Z} . It is common to denote the value of this function at a pair $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ by $a \cdot b$ which is almost always abbreviated as ab.

Axiom 12 introduces the set of positive integers.

Definition.	The set \mathbb{Z} of	integers	satisfies	the foll	lowing 1	.6 axioms.
-------------	-------------------------	----------	-----------	----------	----------	------------

Axiom 1 (ZE). $\mathbb{Z} \neq \emptyset$ Axiom 2 (AE). $\exists + : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ Axiom 3 (AA). $\forall a \in \mathbb{Z} \ \forall b \in \mathbb{Z} \ \forall c \in \mathbb{Z} \ a + (b + c) = (a + b) + c$ Axiom 4 (AC). $\forall a \in \mathbb{Z} \ \forall b \in \mathbb{Z} \ a+b=b+a$ Axiom 5 (AZ). $\exists 0 \in \mathbb{Z} \quad \forall a \in \mathbb{Z} \quad 0 + a = a$ Axiom 6 (AO). $\forall a \in \mathbb{Z} \quad \exists (-a) \in \mathbb{Z} \quad a + (-a) = 0$ Axiom 7 (ME). $\exists \cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$. Axiom 8 (MA). $\forall a \in \mathbb{Z} \ \forall b \in \mathbb{Z} \ \forall c \in \mathbb{Z} \ a(bc) = (ab)c$ Axiom 9 (MC). $\forall a \in \mathbb{Z} \quad \forall b \in \mathbb{Z} \quad ab = ba$ Axiom 10 (MO). $\exists 1 \in \mathbb{Z} \setminus \{0\} \quad \forall a \in \mathbb{Z} \quad 1 \cdot a = a$ Axiom 11 (DL). $\forall a \in \mathbb{Z} \ \forall b \in \mathbb{Z} \ \forall c \in \mathbb{Z} \ a(b+c) = ab + ac$ Axiom 12 (PE). $\exists \mathbb{P} \quad (\mathbb{P} \subset \mathbb{Z} \setminus \{0\}) \land (\mathbb{P} \neq \emptyset)$ Axiom 13 (PD). $\forall a \in \mathbb{Z} \setminus \{0\} \quad (a \in \mathbb{P}) \oplus (-a \in \mathbb{P})$ Axiom 14 (PA). $\forall a \in \mathbb{P} \ \forall b \in \mathbb{P} \ a + b \in \mathbb{P}$ Axiom 15 (PM). $\forall a \in \mathbb{P} \ \forall b \in \mathbb{P} \ ab \in \mathbb{P}$ Axiom 16 (WO). $(S \subseteq \mathbb{P}) \land (S \neq \emptyset) \Rightarrow (\exists m \in S \ \forall x \in S \setminus \{m\} \ x + (-m) \in \mathbb{P})$

Explanation of abbreviations: ZE - integers exist, AE - addition exists, AA - addition is associative, AC - addition is commutative, AZ - addition has zero, AO - addition has opposites, ME - multiplication exists, MA - multiplication is associative, MC - multiplication is commutative, MO - multiplication has one, MZ - multiplication respects zero, DL - distributive law, PE - positive integers exist, PD - dichotomy involving positive integers, PA - positive integers respect addition, PM - positive integers respect multiplication, WO - the well-ordering axiom.