The Axioms for the Integers

In the axioms below we use the standard notation for logical operators: the conjunction is \wedge, the disjunction is \vee, the exclusive disjunction is \oplus, the implication is \Rightarrow, the universal quantifier is \forall, the existential quantifier is \exists.

We also use the standard set notation: the set membership \in, the subset \subseteq, the equality $=$, the set difference \backslash and the Cartesian product \times. For singleton sets instead of writing $\{a\}=\{b\}$ we write $a=b$.

The notation $f: A \rightarrow B$ stands for a function f which is defined on a set A with the values in B.
Axiom 2 below establishes the existence of the addition function defined on $\mathbb{Z} \times \mathbb{Z}$ with the values in \mathbb{Z}. It is common to denote the value of + at a pair $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ by $a+b$.

Axiom 7 establishes the existence of the multiplication function defined on $\mathbb{Z} \times \mathbb{Z}$ with the values in \mathbb{Z}. It is common to denote the value of this function at a pair $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ by $a \cdot b$ which is almost always abbreviated as $a b$.

Axiom 12 introduces the set of positive integers.
Definition. The set \mathbb{Z} of integers satisfies the following 16 axioms.
Axiom 1 (ZE). $\mathbb{Z} \neq \emptyset$
Axiom 2 (AE). $\exists+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$
Axiom 3 (AA). $\forall a \in \mathbb{Z} \quad \forall b \in \mathbb{Z} \quad \forall c \in \mathbb{Z} \quad a+(b+c)=(a+b)+c$
Axiom 4 (AC). $\forall a \in \mathbb{Z} \quad \forall b \in \mathbb{Z} \quad a+b=b+a$
Axiom 5 (AZ). $\exists 0 \in \mathbb{Z} \quad \forall a \in \mathbb{Z} \quad 0+a=a$
Axiom 6 (AO). $\forall a \in \mathbb{Z} \quad \exists(-a) \in \mathbb{Z} \quad a+(-a)=0$
Axiom 7 (ME). $\exists \cdot: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$.
Axiom 8 (MA). $\forall a \in \mathbb{Z} \quad \forall b \in \mathbb{Z} \forall c \in \mathbb{Z} \quad a(b c)=(a b) c$
Axiom 9 (MC). $\forall a \in \mathbb{Z} \quad \forall b \in \mathbb{Z} \quad a b=b a$
Axiom 10 (MO). $\exists 1 \in \mathbb{Z} \backslash\{0\} \quad \forall a \in \mathbb{Z} \quad 1 \cdot a=a$
Axiom 11 (DL). $\forall a \in \mathbb{Z} \quad \forall b \in \mathbb{Z} \quad \forall c \in \mathbb{Z} \quad a(b+c)=a b+a c$
Axiom $12(\mathrm{PE}) . \exists \mathbb{P} \quad(\mathbb{P} \subseteq \mathbb{Z} \backslash\{0\}) \wedge(\mathbb{P} \neq \emptyset)$
Axiom 13 (PD). $\forall a \in \mathbb{Z} \backslash\{0\} \quad(a \in \mathbb{P}) \oplus(-a \in \mathbb{P})$
Axiom 14 (PA). $\forall a \in \mathbb{P} \quad \forall b \in \mathbb{P} \quad a+b \in \mathbb{P}$
Axiom 15 (PM). $\forall a \in \mathbb{P} \quad \forall b \in \mathbb{P} \quad a b \in \mathbb{P}$
Axiom $16(\mathrm{WO}) .(S \subseteq \mathbb{P}) \wedge(S \neq \emptyset) \Rightarrow(\exists m \in S \quad \forall x \in S \backslash\{m\} \quad x+(-m) \in \mathbb{P})$
Explanation of abbreviations: ZE - integers exist, AE - addition exists, AA - addition is associative, AC addition is commutative, AZ - addition has zero, AO - addition has opposites, ME - multiplication exists, MA - multiplication is associative, MC - multiplication is commutative, MO - multiplication has one, MZ multiplication respects zero, DL - distributive law, PE - positive integers exist, PD - dichotomy involving positive integers, PA - positive integers respect addition, PM - positive integers respect multiplication, WO - the well-ordering axiom.

