MATH 209

Name ____

- 1. Let p and q be propositions.
 - (a) Prove that the negation of $p \oplus q$ is $p \leftrightarrow q$.
 - (b) Consider the proposition $(p \to q) \oplus (q \to p)$. Find an equivalent, but much simpler proposition. (You can use the truth table of the given proposition to discover an equivalent much simpler proposition.)
- 2. (a) State the definition of a rational number. State the definition of an irrational number.
 - (b) Prove or disprove the following theorem: If a is rational and b is irrational, then ab is irrational.
- 3. The universe of discourse in this problem is the set of all real numbers.

Consider the following proposition:

"For every x there exists y such that for all z we have z < y implies $z^2 > x^2$."

- (a) Write the given proposition using quantifiers.
- (b) State the negation of the proposition in (3a).
- (c) Decide which proposition is true: the proposition in (3a) or the proposition in (3b). Prove your claim.
- 4. Let A and B be sets. The set $A \oplus B$ is defined as $A \oplus B = \{x \mid (x \in A) \oplus (x \in B)\}.$
 - (a) Let A, B, C be given sets. Use a Venn diagram to represent the set $(A \oplus B) \oplus C$.
 - (b) Find a formula for the set represented by the Venn diagram in Figure 1. This formula should include the sets A, B and C. For the full credit you must use the set $(A \oplus B) \oplus C$ studied in (4a).
- 5. What is wrong with the proof given in the box below? Please be specific.

