$\qquad$

1. Let $p$ and $q$ be propositions.
(a) Prove that the negation of $p \oplus q$ is $p \leftrightarrow q$.
(b) Consider the proposition $(p \rightarrow q) \oplus(q \rightarrow p)$. Find an equivalent, but much simpler proposition. (You can use the truth table of the given proposition to discover an equivalent much simpler proposition.)
2. (a) State the definition of a rational number. State the definition of an irrational number.
(b) Prove or disprove the following theorem: If $a$ is rational and $b$ is irrational, then $a b$ is irrational.
3. The universe of discourse in this problem is the set of all real numbers.

Consider the following proposition:
"For every $x$ there exists $y$ such that for all $z$ we have $z<y$ implies $z^{2}>x^{2}$."
(a) Write the given proposition using quantifiers.
(b) State the negation of the proposition in (3a).
(c) Decide which proposition is true: the proposition in (3a) or the proposition in (3b). Prove your claim.
4. Let $A$ and $B$ be sets. The set $A \oplus B$ is defined as $A \oplus B=\{x \mid(x \in A) \oplus(x \in B)\}$.
(a) Let $A, B, C$ be given sets. Use a Venn diagram to represent the set $(A \oplus B) \oplus C$.
(b) Find a formula for the set represented by the Venn diagram in Figure 1. This formula should include the sets $A, B$ and $C$. For the full credit you must use the set $(A \oplus B) \oplus C$ studied in (4a).
5. What is wrong with the proof given in the box below? Please be specific.

$$
\begin{align*}
\frac{25}{36} & =\frac{9+16}{36}  \tag{1}\\
\frac{25}{36} & =\frac{1}{4}+\frac{4}{9}  \tag{2}\\
\frac{1}{36} & =\frac{1}{4}-2 \frac{1}{2} \frac{2}{3}+\frac{4}{9}  \tag{3}\\
\left(\frac{1}{6}\right)^{2} & =\left(\frac{1}{2}-\frac{2}{3}\right)^{2}  \tag{4}\\
\frac{1}{6} & =\frac{1}{2}-\frac{2}{3}  \tag{5}\\
1 & =3-4  \tag{6}\\
1 & =-1 \tag{7}
\end{align*}
$$



Figure 1: Venn diagram for (4b)

