Examination 2 February 11, 2011

MATH 209

Name.

1. Consider the functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ given by the formulas

$$f(x) = \left\lfloor \frac{x}{2} \right\rfloor + \left\lceil \frac{x}{2} \right\rceil$$
 and $f(x) = \sqrt{\lfloor x \rfloor \lceil x \rceil}$.

Sketch as accurately as you can the graphs of f and g on the separate sheets of graph paper printed on the back of this page.

2. The universe of discourse in this problem is the set of all positive integers \mathbb{Z}_+ . Prove or disprove each of the following statements:

(A)
$$\forall n \in \mathbb{Z}_+ \lfloor \sqrt{n-1} \rfloor + 1 = \lfloor \sqrt{n} \rfloor$$
 (B) $\forall n \in \mathbb{Z}_+ \lfloor \sqrt{n-1} \rfloor + 1 = \lceil \sqrt{n} \rceil$
(C) $\forall n \in \mathbb{Z}_+ \lceil \sqrt{n-1} \rceil + 1 = \lfloor \sqrt{n} \rfloor$ (D) $\forall n \in \mathbb{Z}_+ \lceil \sqrt{n-1} \rceil + 1 = \lceil \sqrt{n} \rceil$

- 3. As usual if A is a set, $\mathcal{P}(A)$ denotes the power set of A and \emptyset denotes the empty set.
 - (a) Write the following power sets: $\mathcal{P}(\emptyset)$, $\mathcal{P}(\mathcal{P}(\emptyset))$, $\mathcal{P}(\mathcal{P}(\emptyset))$.
 - (b) Decide which of the following statements are true:

(i)
$$\mathcal{P}(\emptyset) \in \mathcal{P}(\mathcal{P}(\emptyset))$$
 (ii) $\mathcal{P}(\emptyset) \in \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$ (iii) $\mathcal{P}(\mathcal{P}(\emptyset)) \in \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$
(iv) $\mathcal{P}(\emptyset) \subseteq \mathcal{P}(\mathcal{P}(\emptyset))$ (v) $\mathcal{P}(\emptyset) \subseteq \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$ (vi) $\mathcal{P}(\mathcal{P}(\emptyset)) \subseteq \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$

Explain your answers to (iii) and (vi).

- 4. I decided to include the problem about outfits even without pictures. Let $S = \{s_1, s_2, s_3, s_4, s_5\}$ be a set of five distinct shirts and let $P = \{p_1, p_2, p_3, p_4\}$ be a set of four distinct pants. The table below contains outfits worn during a week.
 - (a) Do the listed outfits define a function from S to P? Why?
 - (b) Do the listed outfits define a function from P to S? Why?

Is it possible to select days of the week so that the outfits worn during those days do define:

- (c) a function from S to P? Explain?
- (d) an injection from S to P? Explain?
- (e) a surjection from S to P? Explain?

Outfits:							
day	М	Т	W	R	F	Sa	Su
shirt	s_2	s_3	s_1	s_4	s_3	s_5	s_4
pants	p_3	p_2	p_1	p_4	p_1	p_2	p_2

- (f) a function from P to S? Explain?
 - (g) an injection from P to S? Explain?
 - (h) a surjection from P to S? Explain?
- 5. Prove that there exists **exactly** one prime p such that p + 2 and p + 4 are primes.

