\qquad

1. Consider the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ given by the formulas

$$
f(x)=\left\lfloor\frac{x}{2}\right\rfloor+\left\lceil\frac{x}{2}\right\rceil \quad \text { and } \quad f(x)=\sqrt{\lfloor x\rfloor\lceil x\rceil} .
$$

Sketch as accurately as you can the graphs of f and g on the separate sheets of graph paper printed on the back of this page.
2. The universe of discourse in this problem is the set of all positive integers \mathbb{Z}_{+}. Prove or disprove each of the following statements:
(A) $\forall n \in \mathbb{Z}_{+}\lfloor\sqrt{n-1}\rfloor+1=\lfloor\sqrt{n}\rfloor$
(B) $\forall n \in \mathbb{Z}_{+}\lfloor\sqrt{n-1}\rfloor+1=\lceil\sqrt{n}\rceil$
(C) $\forall n \in \mathbb{Z}_{+}\lceil\sqrt{n-1}\rceil+1=\lfloor\sqrt{n}\rfloor$
(D) $\forall n \in \mathbb{Z}_{+}\lceil\sqrt{n-1}\rceil+1=\lceil\sqrt{n}\rceil$
3. As usual if A is a set, $\mathcal{P}(A)$ denotes the power set of A and \emptyset denotes the empty set.
(a) Write the following power sets: $\mathcal{P}(\emptyset), \mathcal{P}(\mathcal{P}(\emptyset)), \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.
(b) Decide which of the following statements are true:
(i) $\mathcal{P}(\emptyset) \in \mathcal{P}(\mathcal{P}(\emptyset))$
(ii) $\mathcal{P}(\emptyset) \in \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$
(iii) $\mathcal{P}(\mathcal{P}(\emptyset)) \in \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$
(iv) $\mathcal{P}(\emptyset) \subseteq \mathcal{P}(\mathcal{P}(\emptyset))$
(v) $\mathcal{P}(\emptyset) \subseteq \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$
(vi) $\mathcal{P}(\mathcal{P}(\emptyset)) \subseteq \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$

Explain your answers to (iii) and (vi).
4. I decided to include the problem about outfits even without pictures. Let $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\}$ be a set of five distinct shirts and let $P=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ be a set of four distinct pants. The table below contains outfits worn during a week.
(a) Do the listed outfits define a function from S to P ? Why?
(b) Do the listed outfits define a function

Outfits:

day	M	T	W	R	F	Sa	Su
shirt	s_{2}	s_{3}	s_{1}	s_{4}	s_{3}	s_{5}	s_{4}
pants	p_{3}	p_{2}	p_{1}	p_{4}	p_{1}	p_{2}	p_{2}

Is it possible to select days of the week so that the outfits worn during those days do define:
(c) a function from S to P ? Explain?
(f) a function from P to S ? Explain?
(d) an injection from S to P ? Explain?
(g) an injection from P to S ? Explain?
(e) a surjection from S to P ? Explain?
(h) a surjection from P to S ? Explain?
5. Prove that there exists exactly one prime p such that $p+2$ and $p+4$ are primes.

