1. (a) Prove that if x is a real number, then $\lfloor 2 x\rfloor=\lfloor x\rfloor+\left\lfloor x+\frac{1}{2}\right\rfloor$.
(b) Prove that if x is a real number, then $\lceil 2 x\rceil=\lceil x\rceil+$???. (You invent the formula and prove it.)
(c) Prove that if x is a real number, then $\lceil 3 x\rceil=\lceil x\rceil+\left\lceil x-\frac{1}{3}\right\rceil+\left\lceil x-\frac{2}{3}\right\rceil$.
2. (a) State the definition of a countable set. (You must use the word "bijection" in this definition.)
(b) Prove that the set \mathbb{Z} of all integers is countable. (You need to prove that the formula that you are giving is really a bijection.)
3. Recall that the factorial of a nonnegative integer is recursively defined by

$$
0!=1, \quad \forall n \in \mathbb{Z}_{+} n!=n \cdot(n-1)!
$$

(a) Prove

$$
\forall n \in \mathbb{Z}_{+} \quad \frac{1}{(n+1)!} \leq \frac{1}{n(n+1)}
$$

(b) Prove

$$
\forall n \in \mathbb{Z}_{+} \quad \sum_{j=0}^{n} \frac{1}{j!} \leq 3-\frac{1}{n}
$$

4. Recall that the Fibonacci numbers are recursively defined by

$$
f_{0}=0, \quad f_{1}=1, \quad \forall n \in \mathbb{Z}_{+} \quad f_{n+1}=f_{n}+f_{n-1}
$$

Prove

$$
\forall n \in \mathbb{Z}_{+} \quad \sum_{j=1}^{n} j f_{j}=n f_{n+2}-f_{n+3}+2
$$

