MATH 209

Final Examination June 6, 2012

1. We are very well familiar with the sequence f_n of the Fibonacci numbers. Here I list them, but I extend the sequence towards left following the same pattern.

					f_0	f_1	f_2	f_3	f_4	f_5	
 5	-3	2	-1	1							
 a_5	a_4	a_3	a_2	a_1	a_0						

Name _

- (a) Find the recursive relation for the sequence $a_0, a_1, \ldots, a_n, \ldots$
- (b) Find the formula for a_n in terms of f_n (this formula should hold for all $n \in \mathbb{N}$). Prove your formula using mathematical induction.
- 2. Let $n \in \mathbb{N}$. Denote by s_n the number of bit strings of length n that contain at least one occurrence of 01.
 - (a) Calculate s_0, s_1, s_2, s_3, s_4 . (b) Find a recurrence relation for the sequence s_n .
 - (c) Use the complement rule to give a formula for s_n in terms of n.
- 3. In this problem we consider the equation $x_1 + x_2 + x_3 + x_4 = 10$.
 - (a) How many nonnegative integer solutions does this equation have?
 - (b) How many of those solutions include digits only, that is such that $0 \le x_j \le 9, j = 1, 2, 3, 4$?
 - (c) How many non negative solutions consists of even numbers only?

4. Let $n \in \mathbb{Z}_+$ and $n \geq 3$. Prove the identity $\binom{2n}{3} = 2n\binom{n}{2} + 2\binom{n}{3}$ in two different ways: using a combinatorial argument and by algebraic manipulation.

- 5. The year 2012 is a **leap year**. A year Y is a **leap year** if Y is divisible by 4 but not divisible by 100 unless Y is divisible by 400. State three logical statements mentioned in the definition of a leap year and name them p, q, r. Then write the definition of the leap year as a compound logical statement using p, q and r and \land, \lor, \neg or any other logical operations.
- 6. Let $S = \{s_1, s_2, s_3, s_4, s_5\}$ be a set of five distinct shirts and let $P = \{p_1, p_2, p_3, p_4\}$ be a set of four distinct pants. The table below contains outfits worn during a week. Outfits:
 - (a) Do the listed outfits define a function from S to P? Why?

(b) Do the listed outfits define a function from	P	to
S? Why?		

Is it possible to select days of the week so that the outfits worn during those days do define:

- (c) a function from S to P? Explain?
- (d) an injection from S to P? Explain?
- (f) a function from P to S? Explain?
- (g) an injection from P to S? Explain?
- (e) a surjection from S to P? Explain?
- (h) a surjection from P to S? Explain?
- 7. Consider a recursively defined sequence $p_0 = 1$, $p_n = \sqrt{1 + p_{n-1}}$, $n \in \mathbb{Z}_+$. Prove the following statement: $\forall n \in \mathbb{Z}_+ p_n$ is irrational.
- 8. There are two counting questions in this problem. They should both lead to the same numerical answer. The setting of this problem is illustrated with two pictures on the back.
 - (a) How many different ways are there to color a 3×3 square board with three colors, say Black, Gray and White, if you are allowed to use each color on exactly three squares?
 - (b) How many ways are there to travel in xyz space from the origin (0,0,0) to the point (3,3,3) by taking steps one unit in the positive x direction, one unit in the positive y direction, or one unit in the positive z direction? (Moving in the negative x, y, or z direction is prohibited, so that no backtracking is allowed.)
 - (c) Explain why the answers in (8a) and (8b) are the same. This should be done by establishing a bijection from the set described in (8a) to the set described in (8b).

day	Μ	Т	W	R	F	Sa	Su
shirt	s_2	s_3	s_1	s_4	s_3	s_5	s_4
pants	p_3	p_2	p_1	p_4	p_1	p_2	p_2

Figure 1: A colored 3×3 board

Figure 2: A path in a $3 \times 3 \times 3$ cube