Proof of the principle of mathematical induction

First recall the well-ordering axiom:

Axiom 16 (WO).
$$(S \subseteq \mathbb{N}) \land (S \neq \emptyset) \Rightarrow (\exists m \in S \ \forall x \in S \ m \leq x)$$

In the above statement of Axiom 16 we used a common convention that the exclusive disjunction $(m < x) \oplus (m = x)$ is abbreviated as $m \le x$.

In the next theorem the universe of discourse is the set \mathbb{Z}_+ of positive integers.

Theorem 1. Let P(n) be a propositional function involving a positive integer n. Then

$$P(1) \land \left(\forall k \ \left(P(k) \Rightarrow P(k+1) \right) \right) \Rightarrow \forall n \ P(n)$$

Proof. We will prove the contrapositive:

$$\exists j \ \neg P(j) \Rightarrow \ \neg P(1) \lor \left(\exists k \ \left(P(k) \land \neg P(k+1) \right) \right)$$
(1)

Assume $\exists j \neg P(j)$. That is, assume that there exists $j \in \mathbb{Z}_+$ such that $\neg P(j)$. Now consider the set

$$S = \{ n \in \mathbb{Z}_+ \, | \, \neg P(n) \}.$$

Clearly $S \subseteq \mathbb{Z}_+$ and $j \in S$. Therefore $S \subseteq \mathbb{N}$ and $S \neq \emptyset$. Hence

$$(S \subseteq \mathbb{N}) \land (S \neq \emptyset)$$

is true. By the well-ordering axiom we conclude

$$\exists m \in S \ \forall x \in S \ m \le x \tag{2}$$

It is important to note that such m is called a *minimum* of S.

Next we make two observations about the proposition (2). First, we notice that the proposition

$$\forall x \in S \quad m \le x$$

is equivalent to

$$\forall x \quad x \in S \Rightarrow m \le x,$$

which is further equivalent to

$$\forall x \quad x < m \Rightarrow x \notin S.$$

Thus (2) is equivalent to

$$\exists m \in S \ \forall x \ (x < m \Rightarrow x \notin S)$$
(3)

Second, we notice that $m \in \mathbb{Z}_+$. Therefore, $(m = 1) \oplus (1 < m)$. In other words, there are two cases for m: either m = 1 or m > 1. Consider these two cases separately.

Case 1. Assume m = 1. Then, since $m = 1 \in S$, we have that $\neg P(1)$ is true. Consequently,

$$\neg P(1) \lor \left(\exists k \left(P(k) \land \neg P(k+1) \right) \right)$$

is true. Thus, we have proved the implication (1) in this case.

Case 2. Assume m > 1. Then m - 1 > 0 and thus $m - 1 \in \mathbb{Z}_+$. Define k = m - 1. Then $k \in \mathbb{Z}_+$. Further, since k < m, (3) implies $k \notin S$. Since $n \in S$ is equivalent to $(n \in \mathbb{Z}_+) \land (\neg P(n)), k \notin S$ is equivalent to $(k \notin \mathbb{Z}_+) \lor P(k)$. Since $k \in \mathbb{Z}_+$, the last disjunction implies that P(k) is true. Recall that $k + 1 = m \in S$. Hence $\neg P(k + 1)$ is true. Thus we just proved that

$$\exists k \ \left(P(k) \land \neg P(k+1) \right)$$

Consequently,

$$\neg P(1) \lor \left(\exists k \left(P(k) \land \neg P(k+1) \right) \right)$$

is true. Thus, we have proved the implication (1) in Case 2, as well. This completes the proof. $\hfill \Box$