
Section 15.2 Problem 14. (a) Compute the critical points of f(x, y) = 2x2 − 3xy + 8y2 +
x− y and classify them.
(b) By completing the square, plot the contour diagram of f and show that the local ex-
tremum found in part (a) is a global one.

Solution. First find the partial derivatives fx(x, y) = 4x−3y+1 and fy(x, y) = −3x+16y−1.
Then solve

4x− 3y = −1

−3x + 16y = 1

to get the critical point x = −13/55, y = 1/55. Now find the value of f at the critical point
to be −7/55.

How to complete the square? The idea is from the book on page 765. For the function
au2 + buv + cv2 the squares can be completed as
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Specifically
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But, how is the formula for f(x, y) related to the formula involving u and v? In the formula
involving u and v the critical point is at the origin u = 0, v = 0. So, the idea here is to move
the critical point of f(x, y) to the origin. For that purpose we introduce the new variables u
and v by
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in the formula for f to get a new function of u and v
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Now we use the completed square formula for 2u2 − 3uv + 8v2 derived above to continue:
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Now we go back to the variables x, y:
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Since in the last formula two squares are added to −7/55 it is clear that the smallest value
of f(x, y) is −7/55. It is also important to notice that for x = −13/55 and y = 1/55 two
squares evaluate to 0.

And there is a different, more direct way to get to the same formula. First complete the
square of the part which involves only x
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Now we use this in the formula for f(x, y):
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