Section 15.2 Problem 40. Find the minimum distance from the point $(1,2,10)$ to the paraboloid given by the equation $z=x^{2}+y^{2}$.

Solution. We need to minimize the function

$$
f(x, y, z)=(x-1)^{2}+(y-2)^{2}+(z-10)^{2}
$$

subject to the constraint

$$
g(x, y, z)=x^{2}+y^{2}-z
$$

We set up the equations

$$
\begin{aligned}
x^{2}+y^{2}-z & =0 \\
2(x-1) & =2 \lambda x \\
2(y-2) & =2 \lambda y \\
2(z-10) & =-\lambda
\end{aligned}
$$

We use the last three equations to express x, y, z in terms of λ

$$
x=\frac{1}{1-\lambda}, \quad y=\frac{2}{1-\lambda}, \quad z=10-\frac{\lambda}{2}
$$

Substituting in the first equation and simplifying we get

$$
\lambda^{3}-22 \lambda^{2}+41 \lambda-10=0 .
$$

The exact expressions for the roots of this equation are too complicated. The approximations for the roots are

$$
\lambda_{1} \approx 0.28775, \quad \lambda_{2} \approx 1.74, \quad \lambda_{3} \approx 19.972
$$

The corresponding points on the paraboloid are:

$$
(1.404,2.808,9.8561), \quad(-1.3513,-2.7026,9.13), \quad(-0.052709,-0.10542,0.013891)
$$

Now, only one of these three points is closest to the given point ($1,2,10$). A simple inspection yields that the first point $(1.404,2.808,9.8561)$ is the closest one. To verify that numerically we would calculate the value of the function $f(x, y, z)$ at each of these points:

$$
\begin{aligned}
f(1.404,2.808,9.8561) & \approx 0.83679 \\
f(-1.3513,-2.7026,9.13) & \approx 28.4 \\
f(-0.052709,-0.10542,0.013891) & \approx 105.26
\end{aligned}
$$

This confirms that indeed the closest point to $(1,2,10)$ on the paraboloid is the point (1.404, 2.808, 9.8561).

You can try replacing the point $(1,2,10)$ with the point $(-1,-2,6)$, or the point $(-3,-6,7)$, or the point $(-5,-10,8)$. Then, the resulting cubic equation can be solved symbolically.

Remark. Approximations are presented rounded to 5 significant digits.

