Problem. Prove that among all triangles with a fixed area the equilateral triangle has the smallest perimeter.

Solution. We will use the variables x, y and h as indicated in the figure below.
With the variables x, y and h the area A and the perimeter P are given as follows:

$$
\begin{gathered}
A=\frac{1}{2}(x+y) h \\
P=x+y+\sqrt{x^{2}+h^{2}}+\sqrt{y^{2}+h^{2}}
\end{gathered}
$$

Applying the method of Lagrange multipliers we get the equations

$$
\begin{align*}
(x+y) h & =2 A \\
1+\frac{x}{\sqrt{x^{2}+h^{2}}} & =\lambda h \tag{1}\\
1+\frac{y}{\sqrt{y^{2}+h^{2}}} & =\lambda h \tag{2}\\
\frac{h}{\sqrt{x^{2}+h^{2}}}+\frac{h}{\sqrt{y^{2}+h^{2}}} & =\lambda(x+y)
\end{align*}
$$

Equations (1) and (2) yield $x=y$. So the above four equations reduce to the following three equations

$$
\begin{align*}
x h & =A \tag{3}\\
1+\frac{x}{\sqrt{x^{2}+h^{2}}} & =\lambda h \tag{4}\\
\frac{h}{\sqrt{x^{2}+h^{2}}} & =\lambda x \tag{5}
\end{align*}
$$

Multiplying (4) by x and (5) by h we obtain

$$
x+\frac{x^{2}}{\sqrt{x^{2}+h^{2}}}=\frac{h^{2}}{\sqrt{x^{2}+h^{2}}},
$$

or, equivalently,

$$
x=\frac{h^{2}-x^{2}}{\sqrt{x^{2}+h^{2}}} .
$$

Squaring the last equation and simplifying we get

$$
x^{2}\left(x^{2}+h^{2}\right)=\left(h^{2}-x^{2}\right)^{2}
$$

Expending both sides we get

$$
x^{4}+(x h)^{2}=h^{4}-2(h x)^{2}+x^{4} .
$$

Now we use (3) and further simplify

$$
A^{2}=h^{4}-2 A^{2}
$$

Hence

$$
h=\sqrt[4]{3} \sqrt{A}, \quad \text { and } \quad x=\frac{A}{h}=\frac{1}{\sqrt[4]{3}} \sqrt{A}
$$

Now we calculate the sides of the triangle:

$$
\begin{aligned}
& \overline{A B}=x+y=\frac{2}{\sqrt[4]{3}} \sqrt{A} \\
& \overline{B C}=\sqrt{y^{2}+h^{2}}=\sqrt{\frac{1}{\sqrt{3}} A+\sqrt{3} A}=\sqrt{\frac{1}{\sqrt{3}} A+\frac{3}{\sqrt{3}} A}=\frac{2}{\sqrt[4]{3}} \sqrt{A} \\
& \overline{C A}=\sqrt{x^{2}+h^{2}}=\sqrt{\frac{1}{\sqrt{3}} A+\sqrt{3} A}=\sqrt{\frac{1}{\sqrt{3}} A+\frac{3}{\sqrt{3}} A}=\frac{2}{\sqrt[4]{3}} \sqrt{A}
\end{aligned}
$$

Thus, the triangle obtained by the Lagrange method is equilateral.
Since the Lagrange method produced only one possible extreme value for the perimeter and since for a small h the corresponding P is large, we conclude that we obtained a triangle with the minimal perimeter.

