Chapter 15 Review Problem 46. An irrigation canal has trapezoidal cross section of area A. Minimize the perimeter p.

Solution. In the book they give three variables: d, w and θ. Then the area A is given by

$$
A=\left(w+\frac{d}{\tan \theta}\right) d
$$

The perimeter p to be minimized is

$$
p=w+2 \frac{d}{\sin \theta}
$$

Solving the the first equation for w and substituting in the formula for the perimeter we get

$$
p=\frac{A}{d}-\frac{d}{\tan \theta}+2 \frac{d}{\sin \theta}
$$

The last expression simplifies to

$$
p=\frac{A}{d}+d \frac{2-\cos \theta}{\sin \theta}
$$

To find the critical points of p as a function of d and θ we find

$$
\frac{\partial p}{\partial d}=-\frac{A}{d^{2}}+\frac{2-\cos \theta}{\sin \theta} \quad \text { and } \quad \frac{\partial p}{\partial \theta}=d \frac{(\sin \theta)^{2}-(2-\cos \theta) \cos \theta}{(\sin \theta)^{2}}
$$

To find the critical points we simplify the expression for $\frac{\partial p}{\partial \theta}$ and solve the equations

$$
-\frac{A}{d^{2}}+\frac{2-\cos \theta}{\sin \theta}=0, \quad d \frac{1-2 \cos \theta}{(\sin \theta)^{2}}=0
$$

Since by the nature of our problem we have $d>0$ and $0<\theta<\pi / 2$, the second equation is equivalent to $1-2 \cos \theta=0$. The solution of this equation is $\theta=\pi / 3$. Substituting this value in the first equation we get

$$
-\frac{A}{d^{2}}+\frac{2-1 / 2}{\sqrt{3} / 2}=0
$$

Solving for d we get $d=\sqrt{A / \sqrt{3}}$. Now calculate the value of p for $\theta=\pi / 3$ and $d=\sqrt{A / \sqrt{3}}$:

$$
p=\sqrt{A \sqrt{3}}+\sqrt{\frac{A}{\sqrt{3}}} \frac{2-1 / 2}{\sqrt{3} / 2}=2 \sqrt{A \sqrt{3}}
$$

It is also interesting to calculate the corresponding w :
$w=\frac{A}{\sqrt{A / \sqrt{3}}}-\frac{\sqrt{A / \sqrt{3}}}{\sqrt{3}}=\sqrt{A \sqrt{3}}-\sqrt{\frac{A}{3 \sqrt{3}}}=\sqrt{A \sqrt{3}}-\sqrt{\frac{A \sqrt{3}}{3 \cdot 3}}=\sqrt{A \sqrt{3}}\left(1-\frac{1}{3}\right)=\frac{2}{3} \sqrt{A \sqrt{3}}$.

Thus the minimum perimeter is three lengths of w. This means that the optimal dimensions of an irrigation canal leads to w equaling the slanted sides of the canal.

It remains to check whether the critical point that we found is really a global minimum. We calculate

$$
\begin{aligned}
\frac{\partial^{2} p}{\partial d^{2}} & =2 \frac{A}{d^{3}} \\
\frac{\partial^{2} p}{\partial \theta \partial d} & =\frac{1-2 \cos \theta}{(\sin \theta)^{2}} \\
\frac{\partial p^{2}}{\partial \theta^{2}} & =d \frac{2(\sin \theta)^{3}-2(1-2 \cos \theta) \sin \theta}{(\sin \theta)^{4}}
\end{aligned}
$$

Next we substitute the values $\theta=\pi / 3$ and $d=\sqrt{A / \sqrt{3}}$ found for the critical point:

$$
\begin{aligned}
\frac{\partial^{2} p}{\partial d^{2}} & =2 \frac{3^{3 / 4}}{\sqrt{A}} \\
\frac{\partial^{2} p}{\partial \theta \partial d} & =0 \\
\frac{\partial p^{2}}{\partial \theta^{2}} & =\frac{4 \sqrt{A}}{3^{3 / 4}}
\end{aligned}
$$

Hence $D>0$ and since $\frac{\partial^{2} p}{\partial d^{2}}>0$ we conclude that the critical point is really a local minimum.
It is clear from the formula for the perimeter that for each fixed $0<\theta<\pi / 2$ for d close to 0 the perimeter is huge. Also for each fixed $0<\theta<\pi / 2$ for a huge p the perimeter is also huge. This tells us that the local minimum that we found is in fact a global minimum. That is also confirmed with the following contour plots of p. In the plot below I chose $A=1$. Figure 1 shows the contours which are 0.1 units apart. Figure 1 shows the magnified view near the critical point. The contours are 0.025 units apart.

Figure 1: A contour plot for p, contours are 0.1 units apart

Figure 2: A contour plot for p, contours are 0.025 units apart

