Winter 2012 Math 224 Chapter 13

Section 13.1 Displacement Vectors

- Addition and subtraction of displacement vectors; scalar multiplication of displacement vectors.
- Resolving a vector into components; magnitude of a vector in components (unit vectors); addition and scalar multiplication in components.
- Components of a displacement vector $\overrightarrow{P_{1} P_{2}}$;

Section 13.1, Exercises and Problems: 1-6, 7-25 (odd), 26-31, 33-40, 42, 43

Section 13.2 Vectors in General

- Velocity versus Speed
- Vectors in n-dimensions

Section 13.2, Exercises and Problems: 7-11, 13, 15, 16, 18, 19, 21, 25, 26

Section 13.3 The Dot Product

- Two definitions give the same result: for any vectors

$$
\vec{v}=v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k} \quad \text { and } \quad \vec{w}=w_{1} \vec{i}+w_{2} \vec{j}+w_{3} \vec{k}
$$

with an angle θ between them

$$
\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos \theta=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3} .
$$

- \vec{v} and \vec{w} are perpendicular (orthogonal, normal) if and only if $\vec{v} \cdot \vec{w}=0$.
- $\vec{v} \cdot \vec{v}=\|\vec{v}\|^{2}$.
- Orthogonal vectors and the equation of a plane
- Projections; Work.

Section 13.3, Exercises and Problems: 1-17, 18-27 (odd), 28, 30, 31, 33, 35, 38, 40, 43, 44, 48, 55, 61, 63

Section 13.4 The Cross Product

- For vectors $\vec{v}=v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k}$ and $\vec{w}=w_{1} \vec{i}+w_{2} \vec{j}+w_{3} \vec{k}$ $\vec{v} \times \vec{w}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right|$ and $\|\vec{v} \times \vec{w}\|$ is the area of a parallelogram with edges \vec{v} and \vec{w}.
- $\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right| \quad$ The absolute value of this determinant is the volume of the parallelepiped with edges $\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}, \vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}, \vec{c}=c_{1} \vec{i}+c_{2} \vec{j}+c_{3} \vec{k}$.

Section 13.4, Exercises and Problems: 1 - 25, 29, 36, 41, 44, 45
Chapter 13, Review Exercises and Problems: 48, 49, 50, 51, 52, 57.

