Section 15.1 Local Extrema

- The concepts of a local maximum and a local minimum.
- The concept of a critical point.
- Relation of critical points and local extrema.
- Classifying critical points: Assume that a point (a, b) is a critical point of a function $F(x, y)$. That is we calculated that $F_{x}(a, b)=0$ and $F_{y}(a, b)=0$. Next we calculate

$$
F_{x x}(a, b), \quad F_{x y}(a, b), \quad F_{y y}(a, b), \quad \text { and } \quad D=F_{x x}(a, b) F_{y y}(a, b)-\left(F_{x y}(a, b)\right)^{2} .
$$

Then $F(a, b)$ is a local minimum if $D>0$ and $F_{x x}(a, b)>0, F(a, b)$ is a local maximum if $D>0$ and $F_{x x}(a, b)<0$, and $F(a, b)$ is neither local minimum nor local maximum (it is a saddle point) if $D<0$.

Section 15.1, Exercises and Problems: 1-18, 20, 24-29, 34

Section 15.2 Optimization

- There are many practical problems here, like 17-23.
- Theorem 15.1 provides conditions under which a function has a global minimum and a global maximum.

Section 15.2, Exercises and Problems: 1-15, 18-25, 27-30

Section 15.3 Constrained optimization: Lagrange multipliers

Section 15.3, Exercises and Problems: 1-18 (do most, in particular 4, 8, 14, 15, 17), 19, 20, 22, 24, $25,26,28,33,38,40$

