$\qquad$
Give detailed explanations for your answers. There are four problems. Each is worth 25 POINTS.

1. Figure 1 shows an oscillating string. The equation of the oscillating string is $y=F(x, t)=(\sin x)(\cos t)$ where $x \in[0, \pi), t \geq 0$. Here, for a fixed time $t=t_{0}, y=F\left(x, t_{0}\right)$ describes the shape of the string at time $t_{0}$. In Figure 1 the string at time $t=t_{0}$ is black. To indicate the motion of the string, I added several previous positions of the string in various shade of gray. Consider the following seven quantities:

$$
F\left(x_{0}, t_{0}\right), F_{x}\left(x_{0}, t_{0}\right), F_{t}\left(x_{0}, t_{0}\right), F_{x x}\left(x_{0}, t_{0}\right), F_{x t}\left(x_{0}, t_{0}\right), F_{t x}\left(x_{0}, t_{0}\right), F_{t t}\left(x_{0}, t_{0}\right)
$$

Based on Figure 1 for each of the seven quantities listed above determine whether it is positive or negative.


Figure 1: An oscillating string
2. The goal of this problem is to make the cheapest storage box with a fixed volume, as shown in Figure 2. For simplicity we can assume that the fixed volume is 1 cubic unit. As you can see in Figure 2 the storage box is build on a side of a house. It has three vertical "walls" made of chain-link fencing and the roof. The roofing material costs three times as much (per square unit) as chain-link fencing. Find the dimensions (depth, width and height) of the storage box that will minimize the cost of the materials.
Give both: exact and approximate values for the dimensions of the box.
Use the second derivative test to confirm that the point you


Figure 2: A storage obtained is a local minimum.
3. Consider the function $F(x, y)=4 x \sqrt{y}-4 \ln (x y)$. (You can think of $F$ as being a temperature at each point of a heated plate.) Consider the point $P=(4,1)$.
(a) Find the vector in the direction of maximum rate of change of $F$ at the point $P$. What is the maximum rate of change of $F$ ?
(b) Find the instantaneous rate of change of $F$ as you leave $P$ heading toward the point $(2,3)$.
(c) Find a vector in a direction in which the rate of change of $F$ at $P$ is 0 .
4. Consider the hyperboloid $x^{2}+y^{2}-z^{2}=1$. Is there a point on this hyperboloid at which the tangent plane to the hyperboloid is parallel to the plane $x+y+z=0$ ? If so, find it, if not explain why not. If there is more than one such point find all of them.
(1) $F\left(x_{0}, t_{0}\right)<0$ position is below $x$-axis 1 $F_{x}\left(x_{0}, t_{0}\right)>0$ the those of the thing is $>0$ $F_{t}\left(x_{0}, t_{0}\right)>0$ the string's position is
$F_{x x}\left(x_{0}, t_{0}\right)>0$ the string is mailing. $F_{x t}\left(x_{0}, t_{0}\right)<0$ the slope in decrees.
$F_{t x}\left(x_{0}, t_{0}\right)<0$ the velocity is decreasing
$F_{t t}\left(x_{0}, t_{0}\right)>0$ with increasing $x$ string in speeding plot cost

(2)

$$
3 x y+2 x z+y z \rightarrow \begin{aligned}
& \text { is the } \\
& \text { cot of } \\
& \text { mater }
\end{aligned}
$$

$$
\begin{aligned}
& x y z=1 \text { volume } \\
& z=1
\end{aligned}
$$ cost of material

$$
\begin{aligned}
z & =\frac{1}{x y} \\
C(x, y) & =3 x y+\frac{2}{y}+\frac{1}{x}
\end{aligned}
$$

(2) Find CP-s:

$$
\begin{aligned}
& C_{x}=3 y-\frac{1}{x^{2}}=0 \\
& C_{y}=3 x-\frac{2}{y^{2}}=0
\end{aligned}
$$

Solve for $x, y>0$.

$$
\begin{aligned}
& y=\frac{1}{3 x^{2}}, 3 x-\frac{2}{\frac{1}{9 x^{4}}}=0 \\
& 6 x^{3}=1, x=\sqrt[1 / 3]{\sqrt[3]{6}}=0 \\
& y=\frac{1}{3 x^{42 / 3}}=\frac{6^{2 / 3}}{3}=\frac{2^{2 / 3} 3^{2 / 3}}{3} \\
& =\frac{2^{2 / 3}}{3^{1 / 3}}=\sqrt[3]{4 / 3} \\
& z=\frac{1}{\frac{1}{3} x y}=\frac{1}{3 x^{2}}=\sqrt[3 x]{3}=\frac{3}{\sqrt[3]{6}}
\end{aligned}
$$

the second derivative test

$$
\begin{aligned}
& \text { The second derivative test } \\
& C_{x x}=2 / x^{3} \quad C_{x y}=3 \quad C_{y y}=4 / y^{3} \\
& D=8 /(x y)^{3}-9=8+279-9=36-9>0
\end{aligned}
$$

(3)

$$
\begin{aligned}
& F_{x}=4 \sqrt{y}-\frac{4}{x} \\
& F_{y}=\frac{2 x}{\sqrt{y}}-\frac{4}{y} \\
& 8-
\end{aligned}
$$

(a)

$$
\begin{aligned}
& (\vec{\nabla} F)(4,1)=\underbrace{3 \vec{\imath}}+4 \vec{j} \\
& \| \vec{\nabla} F)(4,1) \|=\underbrace{5}_{\text {max rate of chang. }} \text { mirectiou of }
\end{aligned}
$$

(b) (矣产 $2 \vec{\imath}+3 \vec{\jmath}-(4 \vec{\imath}+\vec{\jmath})=-2 \vec{\imath}+2 \vec{\jmath}$

$$
\begin{aligned}
& \vec{u}=\frac{1}{\sqrt{2}}(-\vec{i}+\vec{j}) \\
& \vec{u} \cdot \vec{\nabla} F=-\frac{3}{\sqrt{2}}+\frac{4}{\sqrt{2}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

(c) One such vector is $-4 \vec{i}+3 \vec{j}$ or another one $4 \vec{i}-3 \vec{j}$, ortligioned to ( $7 F)(4,1)$.
(4) $\vec{n}=\vec{\imath}+\tilde{\jmath}+\vec{k}$

有 set $H(x, y, z)=x^{2}+y^{2}-z^{2}$

$$
\begin{aligned}
& \text { z et } H(x, y, z)=x+y-z \\
& (\vec{\nabla} H)(x, y, z)=2 x \overrightarrow{2}+2 y \vec{\jmath}-2 z \\
&
\end{aligned}
$$

Is it possible to find $\lambda$ suchtiat

$$
\begin{aligned}
& 2 x \vec{\imath}+2 y \vec{\jmath} 2 z \vec{k}=\lambda(\vec{\imath}+\vec{\jmath}+k) \text {, or } \\
& \left.2 x=\lambda \Rightarrow x=\frac{\lambda}{2}\right\} \text { we need } \\
& 2 y=\lambda \\
& y=\frac{\lambda}{2} \\
& x^{2}+y^{2}-z^{2}=1 \\
& -2 z=\lambda \\
& z=-\frac{\lambda}{2} \\
& \text { So } \\
& \frac{\lambda^{2}}{4}+\frac{z^{2}}{4}-z^{2}=1 \\
& \text { Thus } \lambda^{2}=4 \text { or } \lambda^{4}=2 \text { or } \lambda=-2
\end{aligned}
$$ This gives us tiv poriets $(1,1,-1)$ and $(-1,-1,1)$. At these two points taygentplame to Hypurleotvid are II to the given plane.

