Winter 2015 Math 225 Topics covered

Chapter 16 Know:

$>$ How to set-up double and triple integrals based on geometric description of a region of integration.
$>$ How to convert integrals between different coordinate systems (rectangular, polar, cylindrical, spherical).
$>$ How to assess whether a result of your calculation is reasonable.

Section 17.1 Parameterized Curves Know:

$>$ How vector-valued function $\vec{r}(t)=x(t) \vec{\imath}+y(t) \vec{\jmath}+z(t) \vec{k}$ describes a curve in \mathbb{R}^{3}.
$>$ How to find parametric equations of simple geometric objects (lines, circles, helices) based on given geometric information.
$>$ How to find whether parameterized geometric objects intersect or not.

Section 17.2 Motion, velocity and acceleration Know:

$>$ How to use the concept of velocity and acceleration vector to solve various problems about motion along parameterized curves.
$>$ The relationship between the velocity vector and the arc length of a curve and how to use it to calculate lengths of simple curves. (see related problems on the class web-site)

Section 17.3 Vector fields Know:

> "must know" vector fields (one of the components is 0 , variations on an "exploding" vector field, variations on a rotational vector field, and $y \vec{\imath}+x \vec{\jmath}$ and its variations).
$>$ Hot to sketch a vector field from a given formula and how to recognize which formula belongs to a vector field given graphically.
> That vector fields can be interpreted as velocity fields and force fields
$>$ That in Math 224 we defined a gradient field of a function of two and three variables; a gradient field is a special kind of a vector field.

Section 17.4 Flow of a vector field Know:

$>$ Definition of a flow line and how to verify is a given parametric curve is a flow line of a given vector field.
$>$ How to find flow lines for a given simple vector field (for example for a field with one component constant).
$>$ How to approximate a flow line numerically.

Section 17.5 Parameterized surfaces Know:

$>$ How to parameterize simple surfaces (plane, a graph of $z=f(x, y)$, cylinder, sphere, cone, surfaces of revolution, torus)
$>$ the meaning of parameter curves

Section 18.1 The idea of a line integral Know:

$>$ The definition of a line integral
$>$ How to estimate and compare line integrals for a given vector field and given curves without calculating them
$>$ Two important applications of line integrals: work and circulation
> Properties of line integrals

Section 18.2 Computing line integrals over parameterized curves Know:
$>$ How to parameterize familiar curves (circles, lines, helices, ...)
$>$ How to compute line integrals over parameterized curve
$>$ The differential notation for line integrals

Section 18.3 Gradient fields and path-independent fields Know:

$>$ Fundamental Theorem of Calculus for line integrals
$>$ How to calculate line integrals for gradient fields
$>$ That a continuous vector field \vec{F} defined on an open region R is path-independent if and only if there exists f such that $\vec{F}=\operatorname{grad} f$.

Section 18.4 Path independent vector fields and Green's theorem Know:
$>$ Green's theorem
$>$ How to use Green's theorem to calculate line integrals over simple piecewise closed curves
> The curl test for vector fields in 2-space
$>$ The curl test for vector fields in 3 -space

Section 19.1 The idea of a flux integral Know:

$>$ How to calculate flux of a constant vector field through a flat surface (the idea of the area vector)
$>$ The definition of a flux integral
$>$ How to determine if the flux of a given vector field through a given oriented surface is positive, negative or zero (without calculating it)
$>$ How to compare two flux of given vector fields through given oriented surfaces (without calculating them)
$>$ How to use the idea of the unit normal vector to calculate flux, $d \vec{A}=\vec{n} d A$

Section 19.2 Know:

$>$ How to calculate flux of a given vector field $\vec{F}(x, y, z)$ through a surface S given as the graph of $z=f(x, y)$ where $(x, y) \in D$:

$$
\iint_{S} \vec{F} \cdot d \vec{A}=\iint_{D} \vec{F}(x, y, f(x, y)) \cdot\left(-f_{x} \vec{\imath}-f_{y} \vec{\jmath}+\vec{k}\right) d x d y
$$

$>$ How to calculate flux of a given vector field $\vec{F}(x, y, z)$ through a cylinder S of radius R centered on the z-axes between $z=a$ and $z=b, a<b$, and oriented away from z-axis:

$$
\iint_{S} \vec{F} \cdot d \vec{A}=\int_{a}^{b} \int_{0}^{2 \pi} \vec{F}(R \cos \theta, R \sin \theta, z) \cdot((\cos \theta) \vec{\imath}+(\sin \theta) \vec{\jmath}) R d \theta d z
$$

$>$ How to calculate flux of a given vector field $\vec{F}(x, y, z)$ through a sphere of radius R centered at the origin and oriented away from the origin:

$$
\begin{align*}
& \iint_{S} \vec{F} \cdot d \vec{A}= \\
& \int_{0}^{\pi} \int_{0}^{2 \pi} \vec{F}(R \cos \theta \sin \phi, R \cos \theta \sin \phi, R \cos \phi) \cdot((\cos \theta \sin \phi) \vec{\imath}+(\cos \theta \sin \phi) \vec{\jmath}+(\cos \phi) \vec{k}) R^{2} \sin \phi d \theta d \phi \tag{1}
\end{align*}
$$

$>$ How to calculate the surface area of a surface S given as the graph of $z=f(x, y)$ where $(x, y) \in D$:

$$
\iint_{D}\left\|-f_{x}(x, y) \vec{\imath}-f_{y}(x, y) \vec{\jmath}+\vec{k}\right\| d x d y
$$

Section 19.3 Know:

$>$ How to calculate flux of a given vector field $\vec{F}(x, y, z)$ through a surface S parameterized by

$$
\vec{r}(s, t)=x(s, t) \vec{\imath}+y(s, t) \vec{\jmath}+z(s, t) \vec{k}
$$

where $(s, t) \in D$ oriented by the cross product of tangent vectors to parameter curves:

$$
\iint_{S} \vec{F} \cdot d \vec{A}=\iint_{D} \vec{F}(x(s, t), y(s, t), z(x, y)) \cdot\left(\vec{r}_{s} \times \vec{r}_{t}\right) d s d t
$$

$>$ How to calculate the surface area of a surface S parameterized by $\vec{r}(s, t)$ where $(s, t) \in D$:

$$
\iint_{D}\left\|\vec{r}_{s}(s, t) \times \vec{r}_{t}(s, t)\right\| d s d t
$$

$>$ How to parameterize

- graphs, for example $z=f(x, y)$:

$$
\vec{r}(x, y)=x \vec{\imath}+y \vec{\jmath}+f(x, y) \vec{k}
$$

- cylinders, for example a cylinder of radius R centered on the y-axis:

$$
\vec{r}(\theta, y)=(R \cos \theta) \vec{\imath}+y \vec{\jmath}+(R \sin \theta) \vec{k}
$$

- spheres
- rotational surfaces: for example the surface formed by rotating the graph of $y=f(x)$ around the x-axis.

Section 20.1 The divergence of a vector field Know:

$>$ Geometric and coordinate definitions of divergence and why they represent the same quantity.
$>$ How to calculate divergence for a vector field given by a formula and how to estimate divergence for a vector field given by a picture.
$>$ That the divergence is defined only for vector fields and that the divergence of a vector field is a scalar quantity; for example the expression $\operatorname{div}(\operatorname{div} \vec{F})$ does not make sense.

Section 20.2 The divergence theorem Know:
$>$ The statement of divergence theorem; what is involved, (a potato, its skin, a vector field and its divergence defined in an open region containing the potato)
$>$ How to use the divergence theorem to calculate flux of a vector field through a closed surface
$>$ The importance of divergence free vector fields

Section 20.3 The curl of a vector field Know:

$>$ The concept of the circulation density of a vector field around the direction of a unit vector \vec{n} and the relationship of this quantity to the curl of a vector field
$>$ The geometric and the coordinate definition of the curl of a vector field
$>$ That the curl is defined only for vector fields and that the curl of a vector field is a vector quantity; for example the expression $\operatorname{curl}(\operatorname{curl} \vec{F})$ does make sense, but curl $(\operatorname{div} \vec{F})$ does not make sense
> The importance of the nabla operator notation $\vec{\nabla}=\vec{\imath} \frac{\partial}{\partial x}+\vec{\jmath} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}$ and how it fits into the definitions of the gradient, the divergence and the curl

Section 20.4 Stokes' Theorem Know:

$>$ The statement to Stokes' Theorem and why it is true;
$>$ The importance of curl free vector field
> The concept of a curl field and its vector potential

Section 20.5 The three fundamental theorems Know:

$>$ How the Fundamental Theorem of Calculus (from Math 125), the Fundamental Theorem of Calculus for line integrals, Stokes' Theorem and the Divergence theorem fit together
$>$ The Curl Test for gradient vector fields
> The Divergence Test for curl fields

