Summer 2019 Math 225 Topics covered for Exam 2
Section 17.4 Flow of a vector field Know:
$>$ Definition of a flow line and how to verify is a given parametric curve is a flow line of a given vector field.
> How to find flow lines for a given simple vector field (for example for a field with one component constant).

Section 18.1 The idea of a line integral Know:
$>$ The definition of a line integral
$>$ How to estimate and compare line integrals for a given vector field and given curves without calculating them
$>$ Two important applications of line integrals: work and circulation
$>$ Properties of line integrals

Section 18.2 Computing line integrals over parameterized curves Know:

$>$ How to parameterize familiar curves (circles, lines, helices, ...)
$>$ How to compute line integrals over parameterized curve
$>$ The differential notation for line integrals

Section 18.3 Gradient fields and path-independent fields Know:

$>$ Fundamental Theorem of Calculus for line integrals
$>$ How to calculate line integrals for gradient fields
$>$ That a continuous vector field \mathbf{F} defined on an open region R is path-independent if and only if there exists f such that $\mathbf{F}=\operatorname{grad} f$.

Section 18.4 Path independent vector fields and Green's theorem Know:

$>$ Green's theorem
$>$ How to use Green's theorem to calculate line integrals over simple piecewise closed curves
> The curl test for vector fields in 2-space
$>$ The curl test for vector fields in 3 -space

Section 19.1 The idea of a flux integral Know:

$>$ How to calculate flux of a constant vector field through a flat surface (the idea of the area vector)
$>$ The definition of a flux integral
$>$ How to determine if the flux of a given vector field through a given oriented surface is positive, negative or zero (without calculating it)
$>$ How to compare two flux of given vector fields through given oriented surfaces (without calculating them)

Section 19.2 Know:
$>$ How to calculate flux of a given vector field $\mathbf{F}(x, y, z)$ through a surface S given as the graph of $z=f(x, y)$ where $(x, y) \in D:$

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{A}=\iint_{D} \mathbf{F}(x, y, f(x, y)) \cdot\left(-f_{x} \mathbf{i}-f_{y} \mathbf{j}+\mathbf{k}\right) d x d y
$$

