For most functions f a proof of $\lim _{x \rightarrow+\infty} f(x)=L$ based on the definition in the notes should consist from the following steps.
(1) Find X_{0} such that $f(x)$ is defined for all $x \geq X_{0}$. Justify your choice.
(2) Use algebra to simplify the expression $|f(x)-L|$ with the assumption that $x \geq X_{0}$. Try to eliminate the absolute value.
(3) Use the simplification from (2) to discover the BIN:

$$
|f(x)-L| \leq b(x) \quad \text { valid for } \quad x \geq X_{0}
$$

Here $b(x)$ should be a simple function with the following properties:
(a) $b(x)>0$ for all $x \geq X_{0}$.
(b) $b(x)$ is tiny for huge x.
(c) $b(x)<\epsilon$ is easily solvable for x for each $\epsilon>0$. The solution should be of the form

$$
x>\text { some expression involving } \epsilon \text {. }
$$

(4) Use the solution of $b(x)<\epsilon$ and X_{0} to define $X(\epsilon)=\max \left\{X_{0}\right.$, the solution $\}$.
(5) Use the BIN to prove the implication $\quad x>X(\epsilon) \Rightarrow|f(x)-L|<\epsilon$.

