For most functions f a proof of $\lim_{x \to +\infty} f(x) = L$ based on the definition in the notes should consist from the following steps.

- (1) Find X_0 such that f(x) is defined for all $x \ge X_0$. Justify your choice.
- (2) Use algebra to simplify the expression |f(x) L| with the assumption that $x \ge X_0$. Try to eliminate the absolute value.
- (3) Use the simplification from (2) to discover the BIN:

 $|f(x) - L| \le b(x)$ valid for $x \ge X_0$.

Here b(x) should be a simple function with the following properties:

- (a) b(x) > 0 for all $x \ge X_0$.
- (b) b(x) is tiny for huge x.
- (c) $b(x) < \epsilon$ is easily solvable for x for each $\epsilon > 0$. The solution should be of the form

 $x > \text{ some expression involving } \epsilon.$

- (4) Use the solution of $b(x) < \epsilon$ and X_0 to define $X(\epsilon) = \max \{X_0, \text{the solution}\}\}$.
- (5) Use the BIN to prove the implication $x > X(\epsilon) \Rightarrow |f(x) L| < \epsilon$.