Problem 1. Give symbolic (that is exact, not approximate) expression for the distance between the numbers

$$
3 e^{5 \pi}+\pi^{-2 e} \text { and } 19906872
$$

Do not use the absolute value in your answer. Explain your reasoning.
Problem 2. There is a simple formula expressing the sign function in terms of the unit step function. Can you discover this formula? Remember

$$
\operatorname{sign}(x):=\left\{\begin{aligned}
-1 & \text { if } x<0 \\
0 & \text { if } x=0 \\
1 & \text { if } x>0
\end{aligned} \quad \text { and } \quad \operatorname{us}(x):= \begin{cases}0 & \text { if } x<0 \\
1 & \text { if } x \geq 0\end{cases}\right.
$$

Hint:
Problem 3. (I) Consider the function

$$
f(x)=|\operatorname{sign}(x)|
$$

(a) Determine the domain and the range of this function.
(b) Sketch a detailed graph of this function.
(II) Consider the function

$$
f(x)=\operatorname{sign}(\sin (\pi x))
$$

(a) Determine the domain and the range of this function.
(b) Sketch a detailed graph of this function.
(c) Give formulas for all important points on this graph.

Problem 4. Consider the function

$$
f(x)=x\left\lfloor\frac{1}{x}\right\rfloor
$$

(a) Determine the domain and the range of this function.
(b) Sketch a detailed graph of this function (as detailed as possible by hand).
(c) Give formulas for all important points on this graph.

Problem 5. Let $x, y \in \mathbb{R}$. Prove that $||x|-|y|| \leq|x-y|$.

