\qquad
Problem 1. Prove

$$
\lim _{x \rightarrow 0} x\left\lfloor\frac{1}{x}\right\rfloor=1
$$

Problem 2. Use the definition of limit to prove that

$$
\lim _{x \rightarrow+\infty} \frac{(\sin x)^{2}}{x(\sin x)^{2}+1}=?
$$

Problem 3. Use the definition of limit to prove that

$$
\lim _{x \rightarrow+\infty} \frac{\sin x}{x(\sin x)^{2}+1}=?
$$

Problem 4. Determine whether the function

$$
x \mapsto \frac{1}{x(\sin x)^{2}+1}
$$

has a limit when $x \rightarrow+\infty$. State your conclusion and justify it.
Problem 5. Guess the limit of the function $x \mapsto \ln \left(\left(1+\frac{1}{x}\right)^{x}\right)$ as x approaches $+\infty$. Use the definition of limit to prove your guess.

Hint: You can get useful estimates for the logarithm function by approximating the gray area in the figure below by a smaller and a bigger rectangle.

