ON TWO COMMON SEQUENCES

BRANKO ĆURGUS

In this note we shall give a simple and easy-to-remember proof that two sequences $\left(\left\{a_{n}\right\}\right.$ and $\left\{s_{n}\right\}$ defined below), commonly used to define the number e, converge to the same limit. Surprisingly, many elementary analysis textbooks do not include this topic. The proofs in the classical book [2, Theorem 3.31] and in a more recent book [1, Proposition 3.3.1] are more involved. Related questions have been considered in [3] and [4], however.

We start by recalling Bernoulli's inequality. It states that for all real numbers r with $r>-1, r \neq 0$, and all integers m greater than 1 ,

$$
(1+r)^{m}>1+r m
$$

We also recall that the binomial theorem states that for all real numbers x and y, and all positive integers m,

$$
(x+y)^{m}=\sum_{k=0}^{m}\binom{m}{k} x^{m-k} y^{k}
$$

where $\binom{m}{k}=\frac{m!}{k!(m-k)!}$ are binomial coefficients.
By \mathbb{N} we denote the set of all positive integers. The following two sequences are commonly used to define the number e :

$$
\begin{array}{ll}
a_{n}=\left(1+\frac{1}{n}\right)^{n} & n \in \mathbb{N} \\
s_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}=\sum_{k=0}^{n} \frac{1}{k!}, & n \in \mathbb{N}
\end{array}
$$

Proposition 1. The sequence $\left\{s_{n}\right\}$ is increasing and bounded above by 3 .
Proof. The sequence $\left\{s_{n}\right\}$ is increasing since

$$
s_{n+1}-s_{n}=\frac{1}{(n+1)!}>0 \quad \text { for all } \quad n \in \mathbb{N}
$$

Clearly $s_{1}<3$. Further, notice that $1 / k!\leq 1 /((k-1) k)$ for all integers k with $k \geq 2$. Therefore, for all integers n greater than 1 we have

$$
\begin{aligned}
s_{n} & =\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{(n-1)!}+\frac{1}{n!} \\
& \leq 1+1+\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(n-2)(n-1)}+\frac{1}{(n-1) n} \\
& =2+\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n-2}-\frac{1}{n-1}\right)+\left(\frac{1}{n-1}-\frac{1}{n}\right) \\
& =3-\frac{1}{n} \\
& <3
\end{aligned}
$$

This proves that 3 is an upper bound for $\left\{s_{n}\right\}$.
Proposition 2. The following inequalities hold: $a_{1}=s_{1}$ and for all integers n greater than 1,

$$
\begin{equation*}
s_{n}-\frac{3}{n}<a_{n}<s_{n} \tag{1}
\end{equation*}
$$

Proof. A straightforward verification yields $a_{1}=s_{1}$ and $s_{2}-3 / 2<a_{2}<s_{2}$. Now let n be an integer greater than 2 . The following proof of (1) is a succession of five steps each suggesting the next one.

1. The binomial theorem with $x=1, y=1 / n$ and $m=n$ yields

$$
\begin{equation*}
a_{n}=\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \frac{1}{n^{k}}=1+1+\sum_{k=2}^{n} \frac{1}{k!} \frac{n!}{(n-k)!n^{k}} \tag{2}
\end{equation*}
$$

2. Let k be integer with $2 \leq k \leq n$. The coefficient of $1 / k$! in expansion (2) for a_{n} is, after cancellation of common terms in the numerator and denominator, a product of exactly k factors:

$$
\begin{aligned}
\frac{n!}{(n-k)!n^{k}} & =\frac{n(n-1) \cdots(n-k+1)}{n^{k}} \\
& =\left(\frac{n}{n}\right)\left(\frac{n-1}{n}\right)\left(\frac{n-2}{n}\right) \cdots\left(\frac{n-k+1}{n}\right) \\
& =1 \cdot\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right) .
\end{aligned}
$$

3. The number 1 is the greatest and $(1-(k-1) / n)$ is the smallest factor of the last product. Therefore,

$$
\left(1-\frac{k-1}{n}\right)^{k}<\frac{n!}{n^{k}(n-k)!}=1 \cdot\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)<1^{k}=1
$$

4. Bernoulli's inequality with $r=-(k-1) / n$ and $m=k$ yields

$$
\left(1-\frac{k-1}{n}\right)^{k}>1-k \frac{k-1}{n}=1-\frac{(k-1) k}{n}
$$

The last two displayed relations together imply

$$
\begin{equation*}
1-\frac{(k-1) k}{n}<\frac{n!}{n^{k}(n-k)!}<1 . \tag{3}
\end{equation*}
$$

5. Inequalities (3) give bounds for the coefficient of $1 / k$! in (2). The consequent inequalities for a_{n} are

$$
\begin{equation*}
1+1+\sum_{k=2}^{n} \frac{1}{k!}\left(1-\frac{(k-1) k}{n}\right)<a_{n}<1+1+\sum_{k=2}^{n} \frac{1}{k!} \cdot 1=s_{n} . \tag{4}
\end{equation*}
$$

Finally, a simplification of the left-hand side of (4) shows that it is equal to

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{1}{k!}-\sum_{k=2}^{n} \frac{1}{k!} \frac{(k-1) k}{n}=s_{n}-\frac{1}{n} \sum_{k=2}^{n} \frac{1}{(k-2)!}=s_{n}-\frac{1}{n} s_{n-2} \tag{5}
\end{equation*}
$$

Moreover, by Proposition $1 s_{n-2}<3$ and therefore $s_{n}-\frac{1}{n} s_{n-2}>s_{n}-3 / n$. Hence, the left-hand side of (4) is greater than $s_{n}-3 / n$. Thus, (1) holds for $n>2$.
Theorem 3. The sequences $\left\{a_{n}\right\}$ and $\left\{s_{n}\right\}$ converge to the same limit.
Proof. The sequence $\left\{s_{n}\right\}$ converges by the Monotone Convergence Theorem and Proposition 1. The sequence $\left\{a_{n}\right\}$ converges to the same limit by the Squeeze Theorem and Proposition 2.

Theorem 3 justifies the following definition.
Definition 4. The number e is the common limit of the sequences $\left\{a_{n}\right\}$ and $\left\{s_{n}\right\}$.

References

[1] K. R. Davidson, A. P. Donsing, Real Analysis with Real Applications. Prentice Hall, 2002.
[2] W. Rudin, Principles of Mathematical Analysis. Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill, 1976.
[3] N. Schaumberger, Another proof of the formula $e=\sum(1 / n!)$, The College Math. Journal 25 (1994) 38-39.
[4] J. Wiener, Bernoulli's inequality and the number e, The College Math. Journal 16 (1985) 399-400.

