
ON TWO COMMON SEQUENCES

BRANKO ĆURGUS

In this note we shall give a simple and easy-to-remember proof that two se-
quences ({an} and {sn} defined below), commonly used to define the number e,
converge to the same limit. Surprisingly, many elementary analysis textbooks do
not include this topic. The proofs in the classical book [2, Theorem 3.31] and in a
more recent book [1, Proposition 3.3.1] are more involved. Related questions have
been considered in [3] and [4], however.

We start by recalling Bernoulli’s inequality. It states that for all real numbers r
with r > −1, r 6= 0, and all integers m greater than 1,

(1 + r)m > 1 + rm.

We also recall that the binomial theorem states that for all real numbers x and y,
and all positive integers m,

(x + y)m =

m
∑

k=0

(

m

k

)

xm−kyk,

where
(

m

k

)

= m!
k!(m−k)! are binomial coefficients.

By N we denote the set of all positive integers. The following two sequences are
commonly used to define the number e:

an =

(

1 +
1

n

)n

, n ∈ N,

sn = 1 +
1

1!
+

1

2!
+ · · · +

1

n!
=

n
∑

k=0

1

k!
, n ∈ N.

Proposition 1. The sequence {sn} is increasing and bounded above by 3.

Proof. The sequence {sn} is increasing since

sn+1 − sn =
1

(n + 1)!
> 0 for all n ∈ N.

Clearly s1 < 3. Further, notice that 1/k! ≤ 1/
(

(k − 1)k
)

for all integers k with
k ≥ 2. Therefore, for all integers n greater than 1 we have

sn =
1

0!
+

1

1!
+

1

2!
+

1

3!
+ · · · +

1

(n − 1)!
+

1

n!

≤ 1 + 1 +
1

1 · 2
+

1

2 · 3
+ · · · +

1

(n − 2)(n − 1)
+

1

(n − 1)n

= 2 +

(

1

1
−

1

2

)

+

(

1

2
−

1

3

)

+ · · · +

(

1

n − 2
−

1

n − 1

)

+

(

1

n − 1
−

1

n

)

= 3 −
1

n
< 3.

This proves that 3 is an upper bound for {sn}. �

Proposition 2. The following inequalities hold: a1 = s1 and for all integers n
greater than 1,

(1) sn −
3

n
< an < sn.
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Proof. A straightforward verification yields a1 = s1 and s2 − 3/2 < a2 < s2. Now
let n be an integer greater than 2. The following proof of (1) is a succession of five
steps each suggesting the next one.
1. The binomial theorem with x = 1, y = 1/n and m = n yields

(2) an =

(

1 +
1

n

)n

=

n
∑

k=0

n!

k!(n − k)!

1

nk
= 1 + 1 +

n
∑

k=2

1

k!

n!

(n − k)!nk
.

2. Let k be integer with 2 ≤ k ≤ n. The coefficient of 1/k! in expansion (2) for
an is, after cancellation of common terms in the numerator and denominator, a
product of exactly k factors:

n!

(n − k)!nk
=

n(n − 1) · · · (n − k + 1)

nk

=

(

n

n

)(

n − 1

n

)(

n − 2

n

)

· · ·

(

n − k + 1

n

)

= 1 ·

(

1 −
1

n

)(

1 −
2

n

)

· · ·

(

1 −
k − 1

n

)

.

3. The number 1 is the greatest and
(

1 − (k − 1)/n
)

is the smallest factor of the
last product. Therefore,

(

1 −
k − 1

n

)k

<
n!

nk(n − k)!
= 1 ·

(

1 −
1

n

)(

1 −
2

n

)

· · ·

(

1 −
k − 1

n

)

< 1k = 1.

4. Bernoulli’s inequality with r = −(k − 1)/n and m = k yields
(

1 −
k − 1

n

)k

> 1 − k
k − 1

n
= 1 −

(k − 1)k

n
.

The last two displayed relations together imply

(3) 1 −
(k − 1)k

n
<

n!

nk(n − k)!
< 1.

5. Inequalities (3) give bounds for the coefficient of 1/k! in (2). The consequent
inequalities for an are

(4) 1 + 1 +

n
∑

k=2

1

k!

(

1 −
(k − 1)k

n

)

< an < 1 + 1 +

n
∑

k=2

1

k!
· 1 = sn.

Finally, a simplification of the left-hand side of (4) shows that it is equal to

(5)
n

∑

k=0

1

k!
−

n
∑

k=2

1

k!

(k − 1)k

n
= sn −

1

n

n
∑

k=2

1

(k − 2)!
= sn −

1

n
sn−2.

Moreover, by Proposition 1 sn−2 < 3 and therefore sn − 1
n
sn−2 > sn − 3/n. Hence,

the left-hand side of (4) is greater than sn − 3/n. Thus, (1) holds for n > 2. �

Theorem 3. The sequences {an} and {sn} converge to the same limit.

Proof. The sequence {sn} converges by the Monotone Convergence Theorem and
Proposition 1. The sequence {an} converges to the same limit by the Squeeze
Theorem and Proposition 2. �

Theorem 3 justifies the following definition.

Definition 4. The number e is the common limit of the sequences {an} and {sn}.
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