## ON TWO COMMON SEQUENCES

## BRANKO ĆURGUS

In this note we shall give a simple and easy-to-remember proof that two sequences ( $\{a_n\}$  and  $\{s_n\}$  defined below), commonly used to define the number e, converge to the same limit. Surprisingly, many elementary analysis textbooks do not include this topic. The proofs in the classical book [2, Theorem 3.31] and in a more recent book [1, Proposition 3.3.1] are more involved. Related questions have been considered in [3] and [4], however.

We start by recalling Bernoulli's inequality. It states that for all real numbers r with  $r > -1, r \neq 0$ , and all integers m greater than 1,

$$(1+r)^m > 1+rm.$$

We also recall that the binomial theorem states that for all real numbers x and y, and all positive integers m,

$$(x+y)^m = \sum_{k=0}^m \binom{m}{k} x^{m-k} y^k,$$

where  $\binom{m}{k} = \frac{m!}{k!(m-k)!}$  are binomial coefficients.

By  $\mathbb{N}$  we denote the set of all positive integers. The following two sequences are commonly used to define the number e:

$$a_n = \left(1 + \frac{1}{n}\right)^n, \qquad n \in \mathbb{N},$$
  
$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} = \sum_{k=0}^n \frac{1}{k!}, \quad n \in \mathbb{N}.$$

**Proposition 1.** The sequence  $\{s_n\}$  is increasing and bounded above by 3.

*Proof.* The sequence  $\{s_n\}$  is increasing since

$$s_{n+1} - s_n = \frac{1}{(n+1)!} > 0$$
 for all  $n \in \mathbb{N}$ .

Clearly  $s_1 < 3$ . Further, notice that  $1/k! \le 1/((k-1)k)$  for all integers k with  $k \ge 2$ . Therefore, for all integers n greater than 1 we have

$$s_n = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{(n-1)!} + \frac{1}{n!}$$
  

$$\leq 1 + 1 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-2)(n-1)} + \frac{1}{(n-1)n}$$
  

$$= 2 + \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-2} - \frac{1}{n-1}\right) + \left(\frac{1}{n-1} - \frac{1}{n}\right)$$
  

$$= 3 - \frac{1}{n}$$
  

$$< 3.$$

This proves that 3 is an upper bound for  $\{s_n\}$ .

**Proposition 2.** The following inequalities hold:  $a_1 = s_1$  and for all integers n greater than 1,

$$s_n - \frac{3}{n} < a_n < s_n.$$

*Proof.* A straightforward verification yields  $a_1 = s_1$  and  $s_2 - 3/2 < a_2 < s_2$ . Now let *n* be an integer greater than 2. The following proof of (1) is a succession of five steps each suggesting the next one.

**1.** The binomial theorem with x = 1, y = 1/n and m = n yields

(2) 
$$a_n = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} \frac{1}{n^k} = 1 + 1 + \sum_{k=2}^n \frac{1}{k!} \frac{n!}{(n-k)! n^k}$$

**2.** Let k be integer with  $2 \le k \le n$ . The coefficient of 1/k! in expansion (2) for  $a_n$  is, after cancellation of common terms in the numerator and denominator, a product of exactly k factors:

$$\frac{n!}{(n-k)! n^k} = \frac{n(n-1)\cdots(n-k+1)}{n^k}$$
$$= \left(\frac{n}{n}\right) \left(\frac{n-1}{n}\right) \left(\frac{n-2}{n}\right) \cdots \left(\frac{n-k+1}{n}\right)$$
$$= 1 \cdot \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right).$$

**3.** The number 1 is the greatest and (1 - (k - 1)/n) is the smallest factor of the last product. Therefore,

$$\left(1-\frac{k-1}{n}\right)^k < \frac{n!}{n^k(n-k)!} = 1 \cdot \left(1-\frac{1}{n}\right) \left(1-\frac{2}{n}\right) \cdots \left(1-\frac{k-1}{n}\right) < 1^k = 1.$$

4. Bernoulli's inequality with r = -(k-1)/n and m = k yields

$$\left(1-\frac{k-1}{n}\right)^k > 1-k\,\frac{k-1}{n} = 1-\frac{(k-1)k}{n}.$$

The last two displayed relations together imply

(3) 
$$1 - \frac{(k-1)k}{n} < \frac{n!}{n^k(n-k)!} < 1.$$

5. Inequalities (3) give bounds for the coefficient of 1/k! in (2). The consequent inequalities for  $a_n$  are

(4) 
$$1+1+\sum_{k=2}^{n}\frac{1}{k!}\left(1-\frac{(k-1)k}{n}\right) < a_n < 1+1+\sum_{k=2}^{n}\frac{1}{k!} \cdot 1 = s_n.$$

Finally, a simplification of the left-hand side of (4) shows that it is equal to

(5) 
$$\sum_{k=0}^{n} \frac{1}{k!} - \sum_{k=2}^{n} \frac{1}{k!} \frac{(k-1)k}{n} = s_n - \frac{1}{n} \sum_{k=2}^{n} \frac{1}{(k-2)!} = s_n - \frac{1}{n} s_{n-2}$$

Moreover, by Proposition 1  $s_{n-2} < 3$  and therefore  $s_n - \frac{1}{n}s_{n-2} > s_n - 3/n$ . Hence, the left-hand side of (4) is greater than  $s_n - 3/n$ . Thus, (1) holds for n > 2.  $\Box$ 

**Theorem 3.** The sequences  $\{a_n\}$  and  $\{s_n\}$  converge to the same limit.

*Proof.* The sequence  $\{s_n\}$  converges by the Monotone Convergence Theorem and Proposition 1. The sequence  $\{a_n\}$  converges to the same limit by the Squeeze Theorem and Proposition 2.

Theorem 3 justifies the following definition.

**Definition 4.** The number e is the common limit of the sequences  $\{a_n\}$  and  $\{s_n\}$ .

## References

- [1] K. R. Davidson, A. P. Donsing, Real Analysis with Real Applications. Prentice Hall, 2002.
- [2] W. Rudin, *Principles of Mathematical Analysis*. Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill, 1976.
- [3] N. Schaumberger, Another proof of the formula  $e = \sum (1/n!)$ , The College Math. Journal **25** (1994) 38-39.
- [4] J. Wiener, Bernoulli's inequality and the number e, The College Math. Journal 16 (1985) 399-400.