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1 New limits from old

1.1 Squeeze theorems

In this section and in Section 1.3 we establish general properties of limits which are based on the
formal definition of limit. These properties are stated as theorems.

Establishing theorems of this kind involves a major step forward in sophistication. Up to this
point we have been trying to show that limits exist directly from the definition. Now for the first
time we are going to assume that some limit exists (I refer to this in class as a green limit.)
and try to make use of this information to establish the existence of some other limit (I refer to
this in class as a red limit.). Remember that to establish the existence of a limit, we had to come
up with a procedure for finding δ(ǫ) that will work for any ǫ > 0 that is given. If we assume the
existence of a limit, then we are assuming the existence of such a procedure, though we may not
know explicitly what it is. I refer to this as a green δ(ǫ). It is this procedure we will need to use
in order to construct a new procedure for the limit whose existence we are trying to establish. I
refer to this as a red δ(ǫ).

We start by considering squeeze theorems that resemble the role of BIN in previous sections.
The following theorem is the Sandwich Squeeze Theorem.

Theorem 1.1.1. Let f, g and h be given functions and let a and L be real numbers. Suppose

that the following three conditions are satisfied.

(1) lim
x→a

f(x) = L,

(2) lim
x→a

h(x) = L,

(3) There exists η0 > 0 such that f(x), g(x) and h(x) are defined for all x ∈
(
a−η0, a

)
∪

(
a, a+η0

)

and

f(x) ≤ g(x) ≤ h(x) for all x ∈
(
a − η0, a

)
∪

(
a, a + η0

)
.

Then

lim
x→a

g(x) = L.

Proof. Here we have three functions and three definitions of limits, one for each function. There-
fore we have to deal with three δ-s. We shall give them appropriate names that will distinguish
them from each other. Let us name them δf , δg and δh.

In the theorem it is assumed that lim
x→a

f(x) = L. This means that we are given the fact that

for each ǫ > 0 there exists δf (ǫ) > 0 (that is, we are given a function δf (ǫ)) such that

0 < |x − a| < δf (ǫ) ⇒ |f(x) − L| < ǫ. (1.1.1)

In class I refer to these as a green δf (·) and a green implication.
Since the theorem assumes that lim

x→a
h(x) = L, we are also given that for each ǫ > 0 there

exists δh(ǫ) > 0 such that

0 < |x − a| < δh(ǫ) ⇒ |h(x) − L| < ǫ. (1.1.2)
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Again we refer to these as a green δh(·) and a green implication.
We need to prove that lim

x→a
g(x) = L. Therefore, following the definition of limit, we have to

show that the following conditions are satisfied:

(I) There exists a real number δ0,g > 0 such that g(x) is defined for each x in the set
(
a −

δ0,g, a
)
∪

(
a, a + δ0,g

)
.

(II) For each real number ǫ > 0 there exists a real number δg(ǫ) such that 0 < δg(ǫ) ≤ δ0,g and
such that

0 < |x − a| < δg(ǫ) ⇒ |g(x) − L| < ǫ. (1.1.3)

Since we have to produce δ0,g, δg(ǫ) and we have to prove the last implication, all of these objects
are red.

Notice that η0 in the theorem is green.
The objective here is to use the green objects to produce the red objects. We shall do that

next. We put:

(I) δ0,g = η0. By the assumption of the theorem g(x) is defined for each x in the set
(
a −

η0, a
)
∪

(
a, a + η0

)
.

(II) For each real number ǫ > 0, put

δg(ǫ) = min
{
δf (ǫ), δh(ǫ), η0

}
.

This is a beautiful expression since the red object is expressed in terms of the green objects.

It remains to prove the red implication (1.1.3) using the green implications and the assump-
tions of the theorem.

To prove (1.1.3), assume that 0 < |x − a| < δg(ǫ). Then, clearly, 0 < |x − a| < η0. This is

telling me that x 6= a and that x is no further than η0 from a. Consequently, x ∈
(
a − η0, a

)
∪

(
a, a + η0

)
. Therefore, by the assumption of the theorem

f(x) ≤ g(x) ≤ h(x).

Subtracting L from each term in this inequality, I conclude that

f(x) − L ≤ g(x) − L ≤ h(x) − L.

Using the property of the absolute value that −|u| ≤ u ≤ |u| for each real number u, we conclude
that

−|f(x) − L| ≤ f(x) − L ≤ g(x) − L ≤ h(x) − L ≤ |h(x) − L|. (1.1.4)

From the assumption 0 < |x − a| < δg(ǫ), we conclude that 0 < |x − a| < δf (ǫ). By the green
implication (1.1.1), this implies that |f(x) − L| < ǫ and therefore

−ǫ < −|f(x) − L|. (1.1.5)

From the assumption 0 < |x − a| < δg(ǫ), we conclude that 0 < |x − a| < δh(ǫ). By the green
implication (1.1.2), this implies that

|h(x) − L| < ǫ. (1.1.6)
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Putting together the inequalities (1.1.4), (1.1.5) and (1.1.6), we conclude that

−ǫ < g(x) − L < ǫ. (1.1.7)

The inequalities in (1.1.7) are equivalent to

|g(x) − L| < ǫ.

This proves that 0 < |x−a| < δg(ǫ) implies |g(x)−L| < ǫ and this is exactly the red implication
(1.1.3). This completes the proof.

The following theorem is the Scissors Squeeze Theorem.

Theorem 1.1.2. Let f, g and h be given functions and let a ∈ R and L ∈ R. Assume that

(1) lim
x→a

f(x) = L,

(2) lim
x→a

h(x) = L,

(3) There exists η0 > 0 such that f(x), g(x) and h(x) are defined for all x ∈
(
a−η0, a

)
∪

(
a, a+η0

)

and

f(x) ≤ g(x) ≤ h(x) for all x ∈
(
a − η0, a

)
,

and

h(x) ≤ g(x) ≤ f(x) for all x ∈
(
a, a + η0

)
.

Then

lim
x→a

g(x) = L.

1.2 Examples for squeeze theorems

The following picture and the numbers that you can see on it are essential for getting squeezes
for limits involving trigonometric functions. The table to the left shows the numbers that you
should be able to identify on the picture.
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Geometric Associated
Object Number

Circular Arc
from C to B u

Line Segment 0A cos u

Line Segment AB sin u

Line Segment AC 1 − cos u

Line Segment CB You Calculate

Line Segment CD tanu

Line Segment 0B 1

Line Segment 0C 1

0 A

B

1

1

C

D

Example 1.2.1. Prove that lim
x→0

cos x = 1.

Solution. Set η0 =
π

3
. Consider positive u. Look at the picture above. The triangle △ACB is a

right triangle. Therefore its hypothenuse, the line segment CB, is longer than its side AC which
equals to 1 − cos u. Thus

1 − cos u = AC ≤ CB. (1.2.1)

The line segment CB is a segment of a straight line, therefore it is shorter than any other
curve joining C and B. In particular it is shorter than the circular arc joining the points C and
B. The length of this circular arc is u. Thus

CB ≤ Length of the Circular Arc from C to B ( = u ). (1.2.2)

Putting together the inequalities (1.2.1) and (1.2.2), we conclude that

1 − cos u ≤ u for all 0 < u <
π

3
. (1.2.3)

Since the length 0A = cos u is smaller than 1, from (1.2.3) we conclude that

0 ≤ 1 − cos u ≤ u for all 0 < u <
π

3
,

or, equivalently,

1 − u ≤ cos u ≤ 1 for all 0 < u <
π

3
,

Now we substitute u = |x| and use the fact that cos |x| = cos x and (1.2) becomes

1 − |x| ≤ cos x ≤ 1 for all −
π

3
< x <

π

3
.
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This is a sandwich squeeze for cos x. It is easy to prove that lim
x→0

1 = 1 and lim
x→0

(
1 − |x|

)
=

1. (Please prove this using the definition!) Now the Sandwich Squeeze Theorem implies that
lim
x→0

cos x = 1.

Example 1.2.2. Prove that lim
x→0

sin x

x
= 1.

Solution. To get a sandwich squeeze for this problem consider the following three areas on the
picture above.

Area 1 The triangle △0CB .

Area 2 The segment of the unit disc bounded by the line segments 0C and 0B and the circular
arc segment joining points C and B.

Area 3 The triangle △0CD .

The picture tells clearly the inequality between these areas. Write that inequality. Calculate
each area in terms of the numbers that appear in the table above. This will lead to the inequality,
which when simplified gives

cos u ≤
sin u

u
≤ 1 for all 0 < x <

π

3
. (1.2.4)

Using the same idea as in the previous example, the inequality (1.2.4) leads to

cos x ≤
sin x

x
≤ 1 for all x ∈

(

−
π

3
, 0

)

∪
(

0,
π

3

)

. (1.2.5)

The inequality (1.2.5) is exactly what we need in the Sandwich Squeeze Theorem. Please fill in
all the details of the rest of the proof.

Example 1.2.3. Prove that lim
x→0

1 − cos x

x2
=

1

2
.

Solution. To establish squeeze inequlaities consider three lengths:

Length 1 The line segment AB .

Length 2 The line segment CB .

Length 3 The length of a circular arc joining the points C and B.

The picture tells clearly the inequalities between these three lengths. Write these inequalities.
Calculate each length in terms of the numbers that appear in the table above. This will lead to
the inequalities, which, when simplified, give

1

2

(
sin u

u

)2

≤
1 − cos u

u2
≤

1

2
for all 0 < u <

π

3
. (1.2.6)

From the inequality (1.2.6) and one inequality established in a previous example you can get an
“easy” sandwich squeeze. Please fill in all the details of the rest of the proof.

Example 1.2.4. Prove that lim
x→0

ln(1 + x)

x
= 1.

Solution. The idea is to use the definition of ln as an integral and work with areas to get
squeeze inequalities.
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1.3 Algebra of limits

A nickname that I gave to a function which has a limit L when x approaches a is: f is constantish

L near a. If we are dealing with constant functions f(x) = L and g(x) = K, then clearly the
sum f + g of these two functions is a constant function equal to L + K. The same is true for
the product fg which is the constant function equal to LK. Another question is whether we can
talk about the reciprocal 1/f . If L 6= 0, then the reciprocal of f is defined and it equals 1/L. In
this section we shall prove that all these properties hold for constantish functions.

Theorem 1.3.1. Let f, g, and h, be functions with domain and range in R. Let a, K and L be

real numbers. Assume that

(1) lim
x→a

f(x) = K,

(2) lim
x→a

g(x) = L.

Then the following statements hold.

(A) If h = f + g, then lim
x→a

h(x) = K + L.

(B) If h = fg, then lim
x→a

h(x) = KL.

(C) If L 6= 0 and h =
1

g
, then lim

x→a
h(x) =

1

L
.

(D) If L 6= 0 and h =
f

g
, then lim

x→a
h(x) =

K

L
.

Proof. The assumption lim
x→a

f(x) = K implies that

green(I-f) There exists (green!) δ0,f > 0 such that f(x) is defined for all x in
(
a − δ0,f , a

)
∪

(
a, a + δ0,f

)
;

green(II-f) For each ǫ > 0 there exists (green!) δf (ǫ) such that 0 < δf (ǫ) ≤ δ0,f and such that

0 < |x − a| < δf (ǫ) ⇒ |f(x) − K| < ǫ. (1.3.1)

The assumption lim
x→a

g(x) = L implies that

green(I-g) There exists (green!) δ0,g > 0 such that g(x) is defined for all x in
(
a − δ0,g, a

)
∪

(
a, a + δ0,g

)
;

green(II-g) For each ǫ > 0 there exists (green!) δg(ǫ) such that 0 < δg(ǫ) ≤ δ0,g and such that

0 < |x − a| < δg(ǫ) ⇒ |g(x) − L| < ǫ. (1.3.2)

Proof of the statement (A). Remember that h(x) = f(x) + g(x) here. First we list what is red
in this proof.
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red(I-h) There exists (red!) δ0,h > 0 such that h(x) is defined for all x in
(
a− δ0,h, a

)
∪

(
a, a+

δ0,h

)
;

red(II-h) For each ǫ > 0 there exists (red!) δh(ǫ) such that 0 < δh(ǫ) ≤ δ0,h and such that

0 < |x − a| < δh(ǫ) ⇒ |h(x) − (K + L)| < ǫ. (1.3.3)

I will not elaborate here how I got the idea for δ0,h and δh(ǫ), I will just give formulas and
convince you that my choice is a correct one. The idea for the formulas comes from the boxed
paragraph on page 8. I invite you to enjoy the separation of colors in the following formulas.

Let ǫ > 0 be given. Put

δ0,h := min {δ0,f , δ0,g}

δh(ǫ) := min
{

δf

( ǫ

2

)

, δg

( ǫ

2

)}

Now I have to prove that h(x) is defined for each x ∈
(
a − δ0,h, a

)
∪

(
a, a + δ0,h

)
. Assume

that x ∈
(
a − δ0,h, a

)
∪

(
a, a + δ0,h

)
. Then

0 < |x − a| < δ0,h ≤ min {δ0,f , δ0,g} . (1.3.4)

It follows from (1.3.4) that
0 < |x − a| < δ0,f ,

and therefore x ∈
(
a − δ0,f , a

)
∪

(
a, a + δ0,f

)
. Thus f(x) is defined. It also follows from (1.3.4)

that
0 < |x − a| < δ0,g,

and therefore x ∈
(
a− δ0,g, a

)
∪

(
a, a + δ0,g

)
. Thus g(x) is defined. Therefore h(x) = f(x) + g(x)

is defined for each x ∈
(
a − δ0,h, a

)
∪

(
a, a + δ0,h

)
.

Now I will prove the red implication (1.3.3). Assume

0 < |x − a| < δh(ǫ) = min
{

δf

( ǫ

2

)

, δg

( ǫ

2

)}

. (1.3.5)

Then
0 < |x − a| < δf

( ǫ

2

)

. (1.3.6)

The inequality (1.3.6) and the implication (1.3.1) allow me to conclude that

|f(x) − K| <
ǫ

2
. (1.3.7)

It follows from (1.3.5) that

0 < |x − a| < δg

( ǫ

2

)

. (1.3.8)

The inequality (1.3.8) and the implication (1.3.2) allow me to conclude that

|g(x) − L| <
ǫ

2
. (1.3.9)
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Now I remember that the absolute value has the property that |u + v| ≤ |u| + |v|. I will
apply this to the expression

|h(x) − (K + L)| = |f(x) + g(x) − K − L| = |(f(x) − K)
︸ ︷︷ ︸

u

+ (g(x) − L)
︸ ︷︷ ︸

v

|

to get
|h(x) − (K + L)| ≤ |f(x) − K| + |g(x) − L|. (1.3.10)

This inequality plays a role of a BIN in this abstract proof. It has an unfriendly object on the
left and all friendly objects on the right.

The inequalities (1.3.7), (1.3.9) and (1.3.10) imply that

|h(x) − (K + L)| <
ǫ

2
+

ǫ

2
= ǫ. (1.3.11)

Reviewing my reasoning above you should be convinced that based on the assumption (1.3.5) I
proved the inequality (1.3.11). This is exactly the implication (1.3.3). This completes the proof
of the statement (A).

Proof of the statement (B). Remember that h(x) = f(x)g(x) here. We first list what is red in
this proof.

red(I-h) There exists (red!) δ0,h > 0 such that h(x) is defined for all x in
(
a− δ0,h, a

)
∪

(
a, a+

δ0,h

)
;

red(II-h) For each ǫ > 0 there exists (red!) δh(ǫ) such that 0 < δh(ǫ) ≤ δ0,h and such that

0 < |x − a| < δh(ǫ) ⇒ |h(x) − KL| < ǫ. (1.3.12)

I will not elaborate how I got the idea for δ0,h and δh(ǫ), I will just give formulas and convince
you that my choice is a correct one. The idea for the formulas comes from the boxed paragraph
on page 10. Again, I invite you to enjoy the separation of colors in the following formulas.

Let ǫ > 0 be given. Put

δ0,h := min {δ0,f , δg(1)}

δh(ǫ) := min

{

δf

(
ǫ

2(|L| + 1)

)

, δg

(
ǫ

2(|K| + 1)

)}

Now I have to prove that h(x) is defined for each x ∈
(
a − δ0,h, a

)
∪

(
a, a + δ0,h

)
. Assume

that x ∈
(
a − δ0,h, a

)
∪

(
a, a + δ0,h

)
. Then

0 < |x − a| < δ0,h ≤ min {δ0,f , δg(1)} . (1.3.13)

It follows from (1.3.13) that
0 < |x − a| < δ0,f ,



9

and therefore x ∈
(
a − δ0,f , a

)
∪

(
a, a + δ0,f

)
. Thus f(x) is defined. It also follows from (1.3.13)

that
0 < |x − a| < δg(1). (1.3.14)

Since by the assumption (II-g) I know that δg(1) ≤ δ0,g, the inequality (1.3.14) implies that

0 < |x − a| < δ0,g.

Therefore x ∈
(
a − δ0,g, a

)
∪

(
a, a + δ0,g

)
. Thus g(x) is defined. Therefore h(x) = f(x)g(x) is

defined for each x ∈
(
a − δ0,h, a

)
∪

(
a, a + δ0,h

)
.

At this point I will prove another consequence of the inequality (1.3.14). This inequality and
the implication (1.3.2) allow me to conclude that

|g(x) − L| < 1.

Therefore
−1 < g(x) − L < 1 ,

or, equivalently
−1 + L < g(x) < L + 1.

Multiplying the last inequality by −1, I conclude that

−1 − L < −g(x) < −L + 1.

From the last two inequalities I conclude that max{g(x),−g(x)} < max{L + 1,−L + 1} =
max{L,−L} + 1. Thus

|g(x)| < |L| + 1. (1.3.15)

Now I will prove the red implication (1.3.12). Assume

0 < |x − a| < δh(ǫ) = min

{

δf

(
ǫ

2(|L| + 1)

)

, δg

(
ǫ

2(|K| + 1)

)}

. (1.3.16)

Then

0 < |x − a| < δf

(
ǫ

2(|K| + 1)

)

. (1.3.17)

The inequality (1.3.17) and the implication (1.3.1) allow me to conclude that

|f(x) − K| <
ǫ

2(|L| + 1)
. (1.3.18)

It follows from (1.3.16) that

0 < |x − a| < δg

(
ǫ

2(|K| + 1)

)

. (1.3.19)

The inequality (1.3.19) and the implication (1.3.2) allow me to conclude that

|g(x) − L| <
ǫ

2(|K| + 1)
. (1.3.20)
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Now I remember that the absolute value has the property that |u + v| ≤ |u|+ |v| and that
|uv| = |u||v|. I will apply these properties to the expression

|h(x) − KL| = |f(x)g(x) − KL| = |
(
f(x)g(x) − Kg(x)

)

︸ ︷︷ ︸

u

+
(
Kg(x) − KL

)

︸ ︷︷ ︸

v

|

≤ |f(x)g(x) − Kg(x)
)
| + |Kg(x) − KL|

≤ |g(x)| |f(x)− K| + |K| |g(x)− L|.

Summarizing
|h(x) − KL| ≤ |g(x)| |f(x)− K| + |K| |g(x) − L|. (1.3.21)

The inequalities (1.3.15) and (1.3.21) imply that

|h(x) − KL| ≤
(
|L| + 1

)
|f(x) − K| + |K| |g(x)− L|. (1.3.22)

This inequality plays a role of a BIN in this abstract proof. It has an unfriendly object on the
left and all friendly objects on the right.

The inequalities (1.3.18), (1.3.20) and (1.3.22) imply that

|h(x) − LK| ≤
(
|L| + 1

) ǫ

2(|L| + 1)
+ |K|

ǫ

2(|K| + 1)
<

ǫ

2
+

ǫ

2
= ǫ. (1.3.23)

I hope that my reasoning above convinces you that the assumption (1.3.16) implies the
inequality (1.3.23). This is exactly the implication (1.3.12). This completes the proof of the part
(B).

Proof of the statement (C). Here we assume that L 6= 0 and h(x) =
1

g(x)
. Next we list what is

red in this proof.

red(I-h) There exists (red!) δ0,h > 0 such that h(x) is defined for all x in
(
a− δ0,h, a

)
∪

(
a, a+

δ0,h

)
;

red(II-h) For each ǫ > 0 there exists (red!) δh(ǫ) such that 0 < δh(ǫ) ≤ δ0,h and such that

0 < |x − a| < δh(ǫ) ⇒

∣
∣
∣
∣

1

g(x)
−

1

L

∣
∣
∣
∣
< ǫ. (1.3.24)

I will not elaborate how I got the idea for δ0,h and δh(ǫ), I will just give formulas and convince
you that my choice is a correct one. The idea for the formulas comes from the boxed paragraph
on page 12. Again, I invite you to enjoy the separation of colors in the following formulas.

Let ǫ > 0 be given. Remember that it is assumed that |L| > 0. Put

δ0,h := δg

(
|L|

2

)

δh(ǫ) := min

{

δg

(
ǫL2

2

)

, δg

(
|L|

2

)}

.
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Now I have to prove that h(x) is defined for each x ∈
(
a − δ0,h, a

)
∪

(
a, a + δ0,h

)
. Assume

that x ∈
(
a − δ0,h, a

)
∪

(
a, a + δ0,h

)
. Then

0 < |x − a| < δ0,h = δg

(
|L|

2

)

.

This inequality and the implication (1.3.2) allow me to conclude that

|g(x) − L| <
|L|

2
.

Therefore

−
|L|

2
< g(x) − L <

|L|

2
,

or, equivalently

−
|L|

2
+ L < g(x) < L +

|L|

2
.

Multiplying the last inequality by −1, I conclude that

−L −
|L|

2
< −g(x) <

|L|

2
− L.

From the last two displayed relationships I conclude that

max{g(x),−g(x)} > max

{

L −
|L|

2
,−L −

|L|

2

}

= max{L,−L} −
|L|

2
.

Thus

|g(x)| > |L| −
|L|

2
=

|L|

2
> 0. (1.3.25)

Consequently, g(x) 6= 0. Therefore, h(x) =
1

g(x)
is defined for all x ∈

(
a− δ0,h, a

)
∪

(
a, a + δ0,h

)
.

Now I will prove the red implication (1.3.24). Assume

0 < |x − a| < δh(ǫ) = min

{

δg

(
ǫL2

2

)

, δg

(
|L|

2

)}

. (1.3.26)

Then

0 < |x − a| < δg

(
ǫL2

2

)

. (1.3.27)

The inequality (1.3.27) and the implication (1.3.2) allow me to conclude that

|g(x) − L| <
ǫL2

2
. (1.3.28)

It also follows from (1.3.26) that

0 < |x − a| < δg

(
|L|

2

)

.
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We already proved that this inequality implies (1.3.25). Therefore

1

|g(x)|
<

2

|L|
. (1.3.29)

This inequality is used at the last step in the sequence of inequalities below. In some sense this
is an abstract version of a “pizza-party” play.

Using our standard tools, algebra, properties of the absolute value and the inequality
(1.3.29) we get

∣
∣
∣
∣
h(x) −

1

L

∣
∣
∣
∣
=

∣
∣
∣
∣

1

g(x)
−

1

L

∣
∣
∣
∣
=

∣
∣
∣
∣

L − g(x)

g(x)L

∣
∣
∣
∣
=

|L − g(x)|

|g(x)| |L|

=
|g(x) − L|

|g(x)| |L|
≤

1

|g(x)|

|g(x) − L|

|L|
≤

2

|L|

|g(x) − L|

|L|
.

Summarizing ∣
∣
∣
∣

1

g(x)
−

1

L

∣
∣
∣
∣
≤

2

L2
|g(x) − L| . (1.3.30)

This inequality plays a role of a BIN in this abstract proof. It has an unfriendly object on the
left and all friendly objects on the right.

The inequalities (1.3.28) and (1.3.30) imply that
∣
∣
∣
∣

1

g(x)
−

1

L

∣
∣
∣
∣
≤

2

L2

ǫL2

2
= ǫ. (1.3.31)

I hope that my reasoning above convinces you that the assumption (1.3.26) implies the inequality
(1.3.31). This is exactly the implication (1.3.24). This completes the proof of the part (C).

Proof of the statement (D). Here we assume that L 6= 0 and h(x) =
f(x)

g(x)
. We can prove the

statement (D) by using the universal power of the statements (B) and (C). First define the

functions g1(x) =
1

g(x)
. Then, by the statement (C) we know

lim
x→a

g1(x) =
1

L
. (1.3.32)

Clearly, h(x) = f(x)g1(x). Now we can apply the statement (B) to this function h. Taking into
account (1.3.32) the statement (B) implies

lim
x→a

h(x) = K
1

L
=

K

L
.

This completes the proof of the statement (D). The theorem is proved.

Exercise 1.3.2. Use the algebra of limits to give much simpler proofs for most of the limits in
the previous exercises and examples.
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1.4 L’Hospital Rule

By definition f ′(a) = lim
x→a

f(x) − f(a)

x − a
.

Theorem 1.4.1. Let f and g be functions and let a be a real number such that f(a) = g(a) = 0.
Assume that the derivatives f ′(a) and g′(a) exist and g′(a) 6= 0. Then

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.

Proof. Assume that the limits f ′(a) = lim
x→a

f(x) − f(a)

x − a
and g′(a) = lim

x→a

g(x) − g(a)

x − a
exist and

g′(a) 6= 0. Then the limit

lim
x→a

f(x) − f(a)

x − a
g(x) − g(a)

x − a

(1.4.1)

exists and it equals
f ′(a)

g′(a)
. Remember that f(a) = g(a) = 0 and simplify

f(x) − f(a)

x − a
g(x) − g(a)

x − a

=

f(x)

x − a
g(x)

x − a

=
f(x)

g(x)
. (1.4.2)

Based on (1.4.1) and (1.4.2) I conclude that

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.

The following is a more powerful version of the L’Hospital rule. It’s proof is not that much
more complicated, but we will skip it here.

Theorem 1.4.2. Let f and g be functions and let a be a real number such that f(a) = g(a) = 0.
Assume that there exists δ0 > 0 such that f(x), g(x), f ′(x), g′(x) are defined for all x ∈

(
a −

δ0, a
)
∪

(
a, a + δ0

)
. Assume that

lim
x→a

f ′(x)

g′(x)
= L.

Then lim
x→a

f(x)

g(x)
= L.

Example 1.4.3. Calculate lim
x→0

x − sin x

x3
.
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Solution. Put f(x) = x− sin x and g(x) = x3. Put δ0 = 1. Then f(x) and g(x) is defined for all
x ∈ (−1, 1). Let x ∈ (−1, 1) and calculate f ′(x) = 1 − cos x and g′(x) = 3x2. Now calculate

lim
x→0

f ′(x)

g′(x)
= lim

x→0

1 − cos x

3x2
= lim

x→0

1

3
·
1 − cos x

x2

=
1

3
· lim

x→0

1 − cos x

x2
=

1

3
·
1

2
=

1

6

Exercise 1.4.4. Use the L’Hospital Rule to find each of the following limits.

(a) lim
x→1

x9 − 1

x5 − 1
(b) lim

x→1

xa − 1

xb − 1
(c) lim

x→π/2

1 − sin x

cos x

(d) lim
x→1

ln x

x − 1
(e) lim

x→0

1 − cos x

(sin x)2
(f) lim

x→0

ln(1 + x)

sin x

(g) lim
x→0

ex − 1

x
(h) lim

x→0

ex − 1 − x

x2
(i) lim

x→0

x + tanx

sin x


