For most functions f a proof of $\lim_{x \to +\infty} f(x) = L$ based on the definition in the notes should consist from the following steps.

- (1) Find X_0 such that f(x) is defined for all $x \ge X_0$. Justify your choice.
- (2) Use algebra to simplify the expression |f(x) L| with the assumption that $x \ge X_0$. Try to eliminate the absolute value.
- (3) Use the simplification from (2) to discover a BIN:

 $||f(x) - L| \le b(x) \text{ valid for } x \ge X_0$ The content of the box above is a BIN.

Here b(x) should be a simple function with the following properties:

- (a) b(x) > 0 for all $x \ge X_0$.
- (b) b(x) is tiny for huge x.

(c) $b(x) < \epsilon$ is easily solvable for x for each $\epsilon > 0$. The solution should be of the form

x > some expression involving ϵ

Warning: In the above inequality some expression involving ϵ must be huge when ϵ is tiny.

(4) Use the solution of $b(x) < \epsilon$, that is some expression involving ϵ and X_0 to define

$$X(\epsilon) = \max \left\{ X_0, \text{ some expression involving } \epsilon \right\}$$

(5) Use the BIN above to prove the implication x > X(ε) ⇒ |f(x) − L| < ε.
Note: The structure of this proof is always the same.

- (i) First assume that $x > X(\epsilon)$.
- (ii) The definition of $X(\epsilon)$ yields that

 $X(\epsilon) \ge X_0$ and $X(\epsilon) \ge$ some expression involving ϵ

(iii) Based of (5i) and (5ii) we conclude that the following two inequalities are true:

 $x > X_0$ and x > some expression involving ϵ

(iv) From (3) part (c) we know that

x >some expression involving ϵ

implies $b(x) < \epsilon$. Therefore (5iii) yields that $b(x) < \epsilon$ is true.

(v) We also established that the BIN is true:

$$|f(x) - L| \le b(x)$$
 valid for $x \ge X_0$

(vi) Together $|f(x) - L| \le b(x)$ and $b(x) < \epsilon$ yield

$$|f(x) - L| < \epsilon.$$

This is exactly what we needed to prove.