For most functions f a proof of $\lim _{x \rightarrow a} f(x)=L$ based on the definition in the notes should consist from the following steps.
(1) Find δ_{0} such that $f(x)$ is defined for all $x \in\left(a-\delta_{0}, a\right) \cup\left(a, a+\delta_{0}\right)$. Justify your choice.
(2) Use algebra to simplify the expression $|f(x)-L|$ with the assumption that $x \in\left(a-\delta_{0}, a\right) \cup\left(a, a+\delta_{0}\right)$. The quantity $|x-a|$ should appear in this simplification.
(3) Use the simplification from (2) to discover a BIN:

$$
|f(x)-L| \leq b(|x-a|) \quad \text { valid for all } \quad x \in\left(a-\delta_{0}, a\right) \cup\left(a, a+\delta_{0}\right) \text {. }
$$

The content of the box above is a BIN.
Here $b(x)$ should be a simple function with the following properties:
(a) $b(|x-a|)>0$ for all $x \in\left(a-\delta_{0}, a\right) \cup\left(a, a+\delta_{0}\right)$.
(b) $b(|x-a|)$ is tiny for tiny $|x-a|$.
(c) $b(|x-a|)<\epsilon$ is easily solvable for $|x-a|$. The solution should be of the form

$$
|x-a|<\text { some expression involving } \epsilon \text {. }
$$

Warning: In the above inequality some expression involving ϵ must be tiny when ϵ is tiny.
(4) Use the solution of $b(|x-a|)<\epsilon$, that is some expression involving ϵ and δ_{0} to define

$$
\delta(\epsilon)=\min \left\{\delta_{0}, \text { some expression involving } \epsilon\right\}
$$

(5) Use the BIN above to prove the implication $0<|x-a|<\delta(\epsilon) \Rightarrow|f(x)-L|<\epsilon$.

Note: The structure of this proof is always the same.
(i) First assume that $0<|x-a|<\delta(\epsilon)$.
(ii) The definition of $\delta(\epsilon)$ yields that

$$
\delta(\epsilon) \leq \delta_{0} \quad \text { and } \quad \delta(\epsilon) \leq \text { some expression involving } \epsilon \text {. }
$$

(iii) Based of (5i) and (5ii) we conclude that the following two inequalities are true:

$$
0<|x-a|<\delta_{0} \quad \text { and } \quad|x-a|<\text { some expression involving } \epsilon \text {. }
$$

(iv) From (3) part (c) we know that

$$
|x-a|<\text { some expression involving } \epsilon \quad \Rightarrow \quad b(|x-a|)<\epsilon
$$

Therefore (5iii) yields that $b(|x-a|)<\epsilon$ is true.
(v) We also proved the BIN:

$$
\begin{array}{|l|l|}
\hline|f(x)-L| \leq b(|x-a|) \quad \text { valid for all } \quad x \in\left(a-\delta_{0}, a\right) \cup\left(a, a+\delta_{0}\right) \\
\hline
\end{array}
$$

We explained in class that the expressions

$$
x \in\left(a-\delta_{0}, a\right) \cup\left(a, a+\delta_{0}\right) \quad \text { and } \quad 0<|x-a|<\delta_{0}
$$

are equivalent. Thus (5iii) yields that the BIN is true.
(vi) Together $|f(x)-L| \leq b(|x-a|)$ and $b(|x-a|)<\epsilon$ yield

$$
|f(x)-L|<\epsilon
$$

Thus the implication $0<|x-a|<\delta(\epsilon) \Rightarrow|f(x)-L|<\epsilon$ is proved.

