MATH 226 Assignment 3 February 14, 2012

Name _____

ℕ.

Problem 1. (a) Prove the following theorem.

Theorem. Let f be a function which is defined on the interval $[1, +\infty)$. Define the sequence $a: \mathbb{N} \to \mathbb{R}$ by

$$a_n = f(n) \quad for \ every \quad n \in \mathbb{N}.$$

If $\lim_{x \to +\infty} f(x) = L$, then $\lim_{n \to +\infty} a_n = L$.

(b) Is the converse of the above theorem true? That is, is the following theorem true:

Theorem. Let f be a function which is defined on the interval $[1, +\infty)$. Define the sequence $a: \mathbb{N} \to \mathbb{R}$ by

$$a_n = f(n)$$
 for every $n \in$

If $\lim_{n \to +\infty} a_n = L$, then $\lim_{x \to +\infty} f(x) = L$.

Problem 2. (a) Prove the following theorem.

Theorem. Let f be a function which is defined on the interval (0, 1]. Define the sequence $a: \mathbb{N} \to \mathbb{R}$ by

$$a_n = f(1/n)$$
 for every $n \in \mathbb{N}$.

If $\lim_{x \downarrow 0} f(x) = L$, then $\lim_{n \to +\infty} a_n = L$.

(b) Is the converse of the above theorem true? That is, is the following theorem true:

Theorem. Let f be a function which is defined on the interval (0, 1]. Define the sequence $a: \mathbb{N} \to \mathbb{R}$ by $a_{-} = f(1/n) \quad \text{for every} \quad n \in \mathbb{N}$

$$a_n = f(1/n)$$
 for every $n \in \mathbb{N}$.

If $\lim_{n \to +\infty} a_n = L$, then $\lim_{x \downarrow 0} f(x) = L$.

Problem 3. Let $a: \mathbb{N} \to \mathbb{R}$ and $b: \mathbb{N} \to \mathbb{R}$ be given sequences. Define the sequence $c: \mathbb{N} \to \mathbb{R}$ by

$$c_n = a_n + b_n$$
 for every $n \in \mathbb{N}$.

Prove: If $\lim_{n \to +\infty} a_n = L$ and $\lim_{n \to +\infty} b_n = K$, then $\lim_{n \to +\infty} c_n = L + K$.