Problem 1. (a) Prove the following theorem.
Theorem. Let f be a function which is defined on the interval $[1,+\infty)$. Define the sequence $a: \mathbb{N} \rightarrow \mathbb{R}$ by

$$
a_{n}=f(n) \quad \text { for every } \quad n \in \mathbb{N} .
$$

If $\lim _{x \rightarrow+\infty} f(x)=L$, then $\lim _{n \rightarrow+\infty} a_{n}=L$.
(b) Is the converse of the above theorem true? That is, is the following theorem true:

Theorem. Let f be a function which is defined on the interval $[1,+\infty)$. Define the sequence $a: \mathbb{N} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
a_{n} & =f(n) \text { for every } n \in \mathbb{N} . \\
\text { If } \lim _{n \rightarrow+\infty} a_{n}=L \text {, then } \lim _{x \rightarrow+\infty} f(x) & =L .
\end{aligned}
$$

Problem 2. (a) Prove the following theorem.
Theorem. Let f be a function which is defined on the interval (0,1$]$. Define the sequence $a: \mathbb{N} \rightarrow \mathbb{R}$ by

$$
a_{n}=f(1 / n) \quad \text { for every } \quad n \in \mathbb{N} .
$$

If $\lim _{x \downarrow 0} f(x)=L$, then $\lim _{n \rightarrow+\infty} a_{n}=L$.
(b) Is the converse of the above theorem true? That is, is the following theorem true:

Theorem. Let f be a function which is defined on the interval (0,1$]$. Define the sequence $a: \mathbb{N} \rightarrow \mathbb{R} b y$

$$
a_{n}=f(1 / n) \quad \text { for every } \quad n \in \mathbb{N} .
$$

If $\lim _{n \rightarrow+\infty} a_{n}=L$, then $\lim _{x \downarrow 0} f(x)=L$.
Problem 3. Let $a: \mathbb{N} \rightarrow \mathbb{R}$ and $b: \mathbb{N} \rightarrow \mathbb{R}$ be given sequences. Define the sequence $c: \mathbb{N} \rightarrow \mathbb{R}$ by

$$
c_{n}=a_{n}+b_{n} \quad \text { for every } \quad n \in \mathbb{N} .
$$

Prove: If $\lim _{n \rightarrow+\infty} a_{n}=L$ and $\lim _{n \rightarrow+\infty} b_{n}=K$, then $\lim _{n \rightarrow+\infty} c_{n}=L+K$.

