ON TWO COMMON SEQUENCES

BRANKO ĆURGUS

The following two sequences are commonly used to define the number e as their limit:

$$
\begin{array}{ll}
P_{n}=\left(1+\frac{1}{n}\right)^{n} & n \in \mathbb{N} \\
S_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}=\sum_{k=0}^{n} \frac{1}{k!}, & n \in \mathbb{N} .
\end{array}
$$

Here \mathbb{N} denotes the set of all positive integers.
In this note we give a direct and easy-to-remember proof that the sequences $\left\{P_{n}\right\}$ and $\left\{S_{n}\right\}$ converge to the same limit.

1. Preliminaries

We first recall the binomial theorem which states that for all real numbers x and y, and all positive integers m,

$$
(x+y)^{m}=\sum_{k=0}^{m}\binom{m}{k} x^{m-k} y^{k}
$$

where $\binom{m}{k}=\frac{m!}{k!(m-k)!}$ are binomial coefficients.
We will also use the familiar formula

$$
1+2+\cdots+k-1=\frac{(k-1) k}{2}
$$

which, as the story goes (see [1] for an impressive detailed account), Carl Friedrich Gauss discovered shortly after his seventh birthday.

Further, we will use the following three limit theorems.
Squeeze Theorem. If $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are sequences such that $a_{n} \leq b_{n} \leq c_{n}$ for all $n \in \mathbb{N}$ and both $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$ converge to the same limit L, then $\left\{b_{n}\right\}$ converges to L.

Sum of Limits Theorem. If $\left\{a_{n}\right\}$ converges to K and $\left\{b_{n}\right\}$ converges to L, then the sequence $\left\{a_{n}+b_{n}\right\}$ converges to $K+L$.

Monotone Convergence Theorem. An increasing sequence which is bounded above converges.

2. Results

Proposition 1. The sequence $\left\{S_{n}\right\}$ is increasing and bounded above by 3 .

Proof. The sequence $\left\{S_{n}\right\}$ is increasing since

$$
S_{n+1}-S_{n}=\frac{1}{(n+1)!}>0 \quad \text { for all } \quad n \in \mathbb{N}
$$

Clearly $S_{1}<3$. Further, notice that $1 / k!\leq 1 /((k-1) k)$ for all integers k with $k \geq 2$. Therefore, for all integers n greater than 1 we have

$$
\begin{aligned}
S_{n} & =\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{(n-1)!}+\frac{1}{n!} \\
& \leq 1+1+\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(n-2)(n-1)}+\frac{1}{(n-1) n} \\
& =2+\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n-2}-\frac{1}{n-1}\right)+\left(\frac{1}{n-1}-\frac{1}{n}\right) \\
& =3-\frac{1}{n} \\
& <3 .
\end{aligned}
$$

This proves that 3 is an upper bound for $\left\{S_{n}\right\}$.
Proposition 2. For all $n \in \mathbb{N}$ we have

$$
\begin{equation*}
S_{n}-\frac{3}{2 n} \leq P_{n} \leq S_{n} \tag{1}
\end{equation*}
$$

Proof. A straightforward calculations confirm that (1) is true for $n=1$ and $n=2$. Now let n be an integer greater than 2. The following proof of (1) is a succession of five steps each suggesting the next one.

1. The binomial theorem with $x=1, y=1 / n$ and $m=n$ yields an expanded expression for P_{n} :

$$
\begin{equation*}
P_{n}=\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \frac{1}{n^{k}}=1+1+\sum_{k=2}^{n} \frac{1}{k!} \frac{n!}{(n-k)!n^{k}} . \tag{2}
\end{equation*}
$$

2. For $k \in\{2, \ldots, n\}$, we rewrite the coefficient with $1 / k$! in 2 as the product of $k-1$ factors:

$$
\begin{align*}
\frac{n!}{(n-k)!n^{k}} & =\frac{n(n-1) \cdots(n-k+1)}{n^{k}} \\
& =\left(\frac{n}{n}\right)\left(\frac{n-1}{n}\right)\left(\frac{n-2}{n}\right) \cdots\left(\frac{n-k+1}{n}\right) \\
& =\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right) . \tag{3}
\end{align*}
$$

3. Notice that 1 is an upper bound for (3) since all the factors in (3) are positive and less then 1.
4. Next we look for a lower bound for the product in (3). We proceed recursively. At each step, in some sense, we turn a product into a sum. For $k=2$ the product in (3) has only one term and obviously

$$
\left(1-\frac{1}{n}\right) \geq 1-\frac{1}{n}
$$

Multiplying both sides by $\left(1-\frac{2}{n}\right)$, then expanding the right-hand side and dropping a positive term, we get a lower bound for $k=3$:

$$
\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \geq\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)>1-\frac{1+2}{n}
$$

Now multiply both sides by $\left(1-\frac{3}{n}\right)$ we similarly get a lower bound for $k=4$:

$$
\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\left(1-\frac{3}{n}\right)>\left(1-\frac{1+2}{n}\right)\left(1-\frac{3}{n}\right)=1-\frac{1+2+3}{n}
$$

Repeating this process a total of $k-1$ times yields:

$$
\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)>1-\frac{1+\cdots+(k-1)}{n}=1-\frac{(k-1) k}{2 n} .
$$

We record the upper and lower bound for the product in (3) as follows: For all $k \in\{2, \ldots, n\}$ we have

$$
\begin{equation*}
1-\frac{(k-1) k}{2 n}<\frac{n!}{n^{k}(n-k)!}<1 . \tag{4}
\end{equation*}
$$

5. We apply the inequalities from (4) to the most right expression in (22) to establish the inequalities for P_{n} :

$$
\begin{equation*}
1+1+\sum_{k=2}^{n} \frac{1}{k!}\left(1-\frac{(k-1) k}{2 n}\right)<P_{n}<1+1+\sum_{k=2}^{n} \frac{1}{k!} \cdot 1=S_{n} \tag{5}
\end{equation*}
$$

A simplification of the left-hand side of (5) leads to

$$
\sum_{k=0}^{n} \frac{1}{k!}-\sum_{k=2}^{n} \frac{1}{k!} \frac{(k-1) k}{2 n}=S_{n}-\frac{1}{2 n} \sum_{k=2}^{n} \frac{1}{(k-2)!}=S_{n}-\frac{1}{2 n} S_{n-2}
$$

Further, since $S_{n-2}<3$, we also have

$$
S_{n}-\frac{1}{2 n} S_{n-2}>S_{n}-\frac{3}{2 n}
$$

Consequently, the left-hand side of (5) is greater than $S_{n}-3 /(2 n)$. This proves (1) for all $n>2$ and completes the proof of the proposition.

Theorem 3. The sequences $\left\{P_{n}\right\}$ and $\left\{S_{n}\right\}$ converge to the same limit.
Proof. Since by Proposition 1 the sequence $\left\{S_{n}\right\}$ is increasing and bounded above, the Monotone Convergence Theorem implies that it converges. The sequence $\{-2 /(3 n)\}$ converges to 0 , by the Sum of Limits Theorem, the sequence $\left\{S_{n}-\right.$ $2 /(3 n)\}$ converges to the limit of $\left\{S_{n}\right\}$. Now, by Proposition 2 and the Squeeze Theorem the sequence $\left\{P_{n}\right\}$ converges to the the limit of $\left\{S_{n}\right\}$.

Theorem 3 justifies the following definition.
Definition 4. The number e is the common limit of the sequences $\left\{P_{n}\right\}$ and $\left\{S_{n}\right\}$.

References

[1] B. Hayes, Versions of the Gauss schoolroom anecdote. Available at http://www.sigmaxi. org/amscionline/gauss-snippets.html

