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The following two sequences are commonly used to define the number e as their
limit:

Pn =

(
1 +

1

n

)n
, n ∈ N,

Sn = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
=

n∑
k=0

1

k!
, n ∈ N.

Here N denotes the set of all positive integers.
In this note we give a direct and easy-to-remember proof that the sequences

{Pn} and {Sn} converge to the same limit.

1. Preliminaries

We first recall the binomial theorem which states that for all real numbers x and
y, and all positive integers m,

(x + y)m =

m∑
k=0

(
m

k

)
xm−kyk,

where
(
m
k

)
= m!

k!(m−k)! are binomial coefficients.

We will also use the familiar formula

1 + 2 + · · ·+ k − 1 =
(k − 1)k

2
,

which, as the story goes (see [1] for an impressive detailed account), Carl Friedrich
Gauss discovered shortly after his seventh birthday.

Further, we will use the following three limit theorems.

Squeeze Theorem. If {an}, {bn} and {cn} are sequences such that an ≤ bn ≤ cn
for all n ∈ N and both {an} and {cn} converge to the same limit L, then {bn}
converges to L.

Sum of Limits Theorem. If {an} converges to K and {bn} converges to L, then
the sequence {an + bn} converges to K + L.

Monotone Convergence Theorem. An increasing sequence which is bounded
above converges.

2. Results

Proposition 1. The sequence {Sn} is increasing and bounded above by 3.
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Proof. The sequence {Sn} is increasing since

Sn+1 − Sn =
1

(n + 1)!
> 0 for all n ∈ N.

Clearly S1 < 3. Further, notice that 1/k! ≤ 1/
(
(k − 1)k

)
for all integers k with

k ≥ 2. Therefore, for all integers n greater than 1 we have

Sn =
1

0!
+

1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

(n− 1)!
+

1

n!

≤ 1 + 1 +
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(n− 2)(n− 1)
+

1

(n− 1)n

= 2 +

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n− 2
− 1

n− 1

)
+

(
1

n− 1
− 1

n

)
= 3− 1

n
< 3.

This proves that 3 is an upper bound for {Sn}. �

Proposition 2. For all n ∈ N we have

Sn −
3

2n
≤ Pn ≤ Sn. (1)

Proof. A straightforward calculations confirm that (1) is true for n = 1 and n = 2.
Now let n be an integer greater than 2. The following proof of (1) is a succession
of five steps each suggesting the next one.
1. The binomial theorem with x = 1, y = 1/n and m = n yields an expanded
expression for Pn:

Pn =

(
1 +

1

n

)n
=

n∑
k=0

n!

k!(n− k)!

1

nk
= 1 + 1 +

n∑
k=2

1

k!

n!

(n− k)!nk
. (2)

2. For k ∈ {2, . . . , n}, we rewrite the coefficient with 1/k! in (2) as the product
of k − 1 factors:

n!

(n− k)!nk
=

n(n− 1) · · · (n− k + 1)

nk

=

(
n

n

)(
n− 1

n

)(
n− 2

n

)
· · ·
(
n− k + 1

n

)
=

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)
. (3)

3. Notice that 1 is an upper bound for (3) since all the factors in (3) are positive
and less then 1.
4. Next we look for a lower bound for the product in (3). We proceed recursively.
At each step, in some sense, we turn a product into a sum. For k = 2 the product
in (3) has only one term and obviously(

1− 1

n

)
≥ 1− 1

n
.
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Multiplying both sides by
(
1− 2

n

)
, then expanding the right-hand side and dropping

a positive term, we get a lower bound for k = 3:(
1− 1

n

)(
1− 2

n

)
≥
(

1− 1

n

)(
1− 2

n

)
> 1− 1 + 2

n
.

Now multiply both sides by
(
1− 3

n

)
we similarly get a lower bound for k = 4:(

1− 1

n

)(
1− 2

n

)(
1− 3

n

)
>

(
1− 1 + 2

n

)(
1− 3

n

)
= 1− 1 + 2 + 3

n
.

Repeating this process a total of k − 1 times yields:(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)
> 1− 1 + · · ·+ (k − 1)

n
= 1− (k − 1)k

2n
.

We record the upper and lower bound for the product in (3) as follows: For all
k ∈ {2, . . . , n} we have

1− (k − 1)k

2n
<

n!

nk(n− k)!
< 1. (4)

5. We apply the inequalities from (4) to the most right expression in (2) to estab-
lish the inequalities for Pn:

1 + 1 +

n∑
k=2

1

k!

(
1− (k − 1)k

2n

)
< Pn < 1 + 1 +

n∑
k=2

1

k!
· 1 = Sn. (5)

A simplification of the left-hand side of (5) leads to
n∑

k=0

1

k!
−

n∑
k=2

1

k!

(k − 1)k

2n
= Sn −

1

2n

n∑
k=2

1

(k − 2)!
= Sn −

1

2n
Sn−2.

Further, since Sn−2 < 3, we also have

Sn −
1

2n
Sn−2 > Sn −

3

2n
.

Consequently, the left-hand side of (5) is greater than Sn−3/(2n). This proves (1)
for all n > 2 and completes the proof of the proposition. �

Theorem 3. The sequences {Pn} and {Sn} converge to the same limit.

Proof. Since by Proposition 1 the sequence {Sn} is increasing and bounded above,
the Monotone Convergence Theorem implies that it converges. The sequence{
−2/(3n)

}
converges to 0, by the Sum of Limits Theorem, the sequence

{
Sn −

2/(3n)
}

converges to the limit of {Sn}. Now, by Proposition 2 and the Squeeze
Theorem the sequence {Pn} converges to the the limit of {Sn}. �

Theorem 3 justifies the following definition.

Definition 4. The number e is the common limit of the sequences {Pn} and {Sn}.
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