ON TWO COMMON SEQUENCES

BRANKO ĆURGUS

The following two sequences are commonly used to define the number e as their limit:

$$P_n = \left(1 + \frac{1}{n}\right)^n, \qquad n \in \mathbb{N},$$

$$S_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} = \sum_{k=0}^n \frac{1}{k!}, \quad n \in \mathbb{N}.$$

Here \mathbb{N} denotes the set of all positive integers.

In this note we give a direct and easy-to-remember proof that the sequences $\{P_n\}$ and $\{S_n\}$ converge to the same limit.

1. Preliminaries

We first recall the binomial theorem which states that for all real numbers x and y, and all positive integers m,

$$(x+y)^m = \sum_{k=0}^m \binom{m}{k} x^{m-k} y^k,$$

where $\binom{m}{k} = \frac{m!}{k!(m-k)!}$ are binomial coefficients.

We will also use the familiar formula

$$1 + 2 + \dots + k - 1 = \frac{(k-1)k}{2},$$

which, as the story goes (see [1] for an impressive detailed account), Carl Friedrich Gauss discovered shortly after his seventh birthday.

Further, we will use the following three limit theorems.

Squeeze Theorem. If $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ are sequences such that $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$ and both $\{a_n\}$ and $\{c_n\}$ converge to the same limit L, then $\{b_n\}$ converges to L.

Sum of Limits Theorem. If $\{a_n\}$ converges to K and $\{b_n\}$ converges to L, then the sequence $\{a_n + b_n\}$ converges to K + L.

Monotone Convergence Theorem. An increasing sequence which is bounded above converges.

2. Results

Proposition 1. The sequence $\{S_n\}$ is increasing and bounded above by 3.

Proof. The sequence $\{S_n\}$ is increasing since

$$S_{n+1} - S_n = \frac{1}{(n+1)!} > 0$$
 for all $n \in \mathbb{N}$.

Clearly $S_1 < 3$. Further, notice that $1/k! \le 1/((k-1)k)$ for all integers k with $k \ge 2$. Therefore, for all integers n greater than 1 we have

$$S_{n} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{(n-1)!} + \frac{1}{n!}$$

$$\leq 1 + 1 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-2)(n-1)} + \frac{1}{(n-1)n}$$

$$= 2 + \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-2} - \frac{1}{n-1}\right) + \left(\frac{1}{n-1} - \frac{1}{n}\right)$$

$$= 3 - \frac{1}{n}$$

$$< 3.$$

This proves that 3 is an upper bound for $\{S_n\}$.

Proposition 2. For all $n \in \mathbb{N}$ we have

$$S_n - \frac{3}{2n} \le P_n \le S_n. \tag{1}$$

Proof. A straightforward calculations confirm that (1) is true for n = 1 and n = 2. Now let n be an integer greater than 2. The following proof of (1) is a succession of five steps each suggesting the next one.

1. The **binomial theorem** with x = 1, y = 1/n and m = n yields an expanded expression for P_n :

$$P_n = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} \frac{1}{n^k} = 1 + 1 + \sum_{k=2}^n \frac{1}{k!} \frac{n!}{(n-k)! n^k}.$$
 (2)

2. For $k \in \{2, ..., n\}$, we **rewrite the coefficient** with 1/k! in (2) as the product of k - 1 factors:

$$\frac{n!}{(n-k)! n^k} = \frac{n(n-1)\cdots(n-k+1)}{n^k}$$
$$= \left(\frac{n}{n}\right) \left(\frac{n-1}{n}\right) \left(\frac{n-2}{n}\right) \cdots \left(\frac{n-k+1}{n}\right)$$
$$= \left(1-\frac{1}{n}\right) \left(1-\frac{2}{n}\right) \cdots \left(1-\frac{k-1}{n}\right). \tag{3}$$

3. Notice that 1 is an **upper bound** for (3) since all the factors in (3) are positive and less then 1.

4. Next we look for a **lower bound** for the product in (3). We proceed recursively. At each step, in some sense, we turn a product into a sum. For k = 2 the product in (3) has only one term and obviously

$$\left(1-\frac{1}{n}\right) \ge 1-\frac{1}{n}.$$

Multiplying both sides by $(1-\frac{2}{n})$, then expanding the right-hand side and dropping a positive term, we get a lower bound for k = 3:

$$\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ge \left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) > 1-\frac{1+2}{n}.$$

Now multiply both sides by $\left(1-\frac{3}{n}\right)$ we similarly get a lower bound for k=4:

$$\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\left(1 - \frac{3}{n}\right) > \left(1 - \frac{1+2}{n}\right)\left(1 - \frac{3}{n}\right) = 1 - \frac{1+2+3}{n}$$

Repeating this process a total of k-1 times yields:

$$\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\cdots\left(1 - \frac{k-1}{n}\right) > 1 - \frac{1 + \dots + (k-1)}{n} = 1 - \frac{(k-1)k}{2n}.$$

We record the upper and lower bound for the product in (3) as follows: For all $k \in \{2, ..., n\}$ we have

$$1 - \frac{(k-1)k}{2n} < \frac{n!}{n^k(n-k)!} < 1.$$
(4)

5. We apply the inequalities from (4) to the most right expression in (2) to establish the inequalities for P_n :

$$1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \left(1 - \frac{(k-1)k}{2n} \right) < P_n < 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \cdot 1 = S_n.$$
 (5)

A simplification of the left-hand side of (5) leads to

$$\sum_{k=0}^{n} \frac{1}{k!} - \sum_{k=2}^{n} \frac{1}{k!} \frac{(k-1)k}{2n} = S_n - \frac{1}{2n} \sum_{k=2}^{n} \frac{1}{(k-2)!} = S_n - \frac{1}{2n} S_{n-2}$$

Further, since $S_{n-2} < 3$, we also have

$$S_n - \frac{1}{2n}S_{n-2} > S_n - \frac{3}{2n}$$

Consequently, the left-hand side of (5) is greater than $S_n - 3/(2n)$. This proves (1) for all n > 2 and completes the proof of the proposition.

Theorem 3. The sequences $\{P_n\}$ and $\{S_n\}$ converge to the same limit.

Proof. Since by Proposition 1 the sequence $\{S_n\}$ is increasing and bounded above, the Monotone Convergence Theorem implies that it converges. The sequence $\{-2/(3n)\}$ converges to 0, by the Sum of Limits Theorem, the sequence $\{S_n - 2/(3n)\}$ converges to the limit of $\{S_n\}$. Now, by Proposition 2 and the Squeeze Theorem the sequence $\{P_n\}$ converges to the the limit of $\{S_n\}$.

Theorem 3 justifies the following definition.

Definition 4. The number e is the common limit of the sequences $\{P_n\}$ and $\{S_n\}$.

References

 B. Hayes, Versions of the Gauss schoolroom anecdote. Available at http://www.sigmaxi. org/amscionline/gauss-snippets.html