For most functions f a proof of $\lim_{x\to a} f(x) = L$ based on the definition in the notes should consist from the following steps.

- (1) Find δ_0 such that f(x) is defined for all $x \in (a \delta_0, a) \cup (a, a + \delta_0)$. Justify your choice.
- (2) Use algebra to simplify the expression |f(x) L| with the assumption that $x \in (a \delta_0, a) \cup (a, a + \delta_0)$. The quantity |x-a| should appear in this simplification.
- (3) Use the simplification from (2) to discover a BIN:

$$|f(x) - L| \le b(|x - a|)$$
 valid for all $x \in (a - \delta_0, a) \cup (a, a + \delta_0)$.
The content of the box above is a BIN.

Here $b(\cdot)$ should be a simple function with the following properties:

- (a) b(|x-a|) > 0 for all $x \in (a \delta_0, a) \cup (a, a + \delta_0)$.
- (b) b(|x-a|) is tiny for tiny |x-a|.
- (c) $b(|x-a|) < \epsilon$ is easily solvable for |x-a|. The solution should be of the form

$$|x-a| < |$$
 some expression involving ϵ

|x-a|< some expression involving ϵ .

Warning: In the above inequality some expression involving ϵ must be tiny when ϵ is tiny.

(4) Use the solution of $b(|x-a|) < \epsilon$, that is some expression involving ϵ and δ_0 to define

$$\delta(\epsilon) = \min \Big\{ \delta_0, \text{ some expression involving } \epsilon \Big\}.$$

(5) Use the BIN above to **prove** the implication $0 < |x - a| < \delta(\epsilon) \Rightarrow |f(x) - L| < \epsilon$.

Note: The structure of this **proof** is always the same.

- (i) First assume that $0 < |x a| < \delta(\epsilon)$.
- (ii) The definition of $\delta(\epsilon)$ yields that

$$\delta(\epsilon) \le \delta_0$$
 and $\delta(\epsilon) \le$ some expression involving ϵ

(iii) Based of (5i) and (5ii) we conclude that the following two inequalities are true:

$$0 < |x - a| < \delta_0$$
 and $|x - a| <$ some expression involving ϵ

(iv) From (3) part (c) we know that

$$|x-a| <$$
 some expression involving ϵ $\Rightarrow b(|x-a|) < \epsilon$.

Therefore (5iii) yields that $b(|x-a|) < \epsilon$ is true.

(v) We also proved the BIN:

$$|f(x) - L| \le b(|x - a|)$$
 valid for all $x \in (a - \delta_0, a) \cup (a, a + \delta_0)$

We explained in class that the expressions

$$x \in (a - \delta_0, a) \cup (a, a + \delta_0)$$
 and $0 < |x - a| < \delta_0$

are equivalent. Thus (5iii) yields that the BIN is true.

(vi) Together $|f(x) - L| \le b(|x - a|)$ and $b(|x - a|) < \epsilon$ yield

$$|f(x) - L| < \epsilon$$
.

Thus the implication $0 < |x - a| < \delta(\epsilon) \Rightarrow |f(x) - L| < \epsilon$ is proved.