## MATH 226 Assignment 3 February 12, 2016

Name \_\_\_\_\_

**Problem 1.** (a) Prove the following theorem.

**Theorem.** Let f be a function which is defined on the interval  $[1, +\infty)$ . Define the sequence  $a: \mathbb{N} \to \mathbb{R}$  by

$$a_n = f(n)$$
 for every  $n \in \mathbb{N}$ .

If  $\lim_{x \to +\infty} f(x) = L$ , then  $\lim_{n \to +\infty} a_n = L$ .

(b) Is the converse of the above theorem true? That is, is the following theorem true:

**Theorem.** Let f be a function which is defined on the interval  $[1, +\infty)$ . Define the sequence  $a: \mathbb{N} \to \mathbb{R}$  by

$$a_n = f(n)$$
 for every  $n \in \mathbb{N}$ .  
If  $\lim_{n \to +\infty} a_n = L$ , then  $\lim_{x \to +\infty} f(x) = L$ .

Justify your answer.

**Problem 2.** (a) Prove the following theorem.

**Theorem.** Let f be a function which is defined on the interval (0, 1]. Define the sequence  $a: \mathbb{N} \to \mathbb{R}$  by

$$a_n = f(1/n)$$
 for every  $n \in \mathbb{N}$ .  
If  $\lim_{x \downarrow 0} f(x) = L$ , then  $\lim_{n \to +\infty} a_n = L$ .

(b) Formulate the converse of the above theorem. Is the converse true? Justify your answer.

**Problem 3.** Let  $a \colon \mathbb{N} \to \mathbb{R}$  and  $b \colon \mathbb{N} \to \mathbb{R}$  be given sequences. Define the sequence  $c \colon \mathbb{N} \to \mathbb{R}$  by

$$c_n = a_n + b_n$$
 for every  $n \in \mathbb{N}$ .

Prove: If  $\lim_{n \to +\infty} a_n = L$  and  $\lim_{n \to +\infty} b_n = K$ , then  $\lim_{n \to +\infty} c_n = L + K$ .

**Problem 4.** Consider the sequence  $a: \mathbb{N} \to \mathbb{R}$  defined by

$$a_n = \sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1}{n+1} + \dots + \frac{1}{2n}, \qquad n \in \mathbb{N}.$$

Prove that this sequence converges. Finding the exact value of the limit is extra credit.

**Problem 5.** Prove that the sequence  $s \colon \mathbb{N} \to \mathbb{R}$  defined by  $s_n = (-1)^n$  for all  $n \in \mathbb{N}$ , does not converge.