Problem 1. (a) Prove the following theorem.
Theorem. Let f be a function which is defined on the interval $[1,+\infty)$. Define the sequence $a: \mathbb{N} \rightarrow \mathbb{R}$ by

$$
a_{n}=f(n) \quad \text { for every } \quad n \in \mathbb{N} .
$$

If $\lim _{x \rightarrow+\infty} f(x)=L$, then $\lim _{n \rightarrow+\infty} a_{n}=L$.
(b) Is the converse of the above theorem true? That is, is the following theorem true:

Theorem. Let f be a function which is defined on the interval $[1,+\infty)$. Define the sequence $a: \mathbb{N} \rightarrow \mathbb{R}$ by

$$
a_{n}=f(n) \quad \text { for every } \quad n \in \mathbb{N} .
$$

If $\lim _{n \rightarrow+\infty} a_{n}=L$, then $\lim _{x \rightarrow+\infty} f(x)=L$.
Justify your answer.
Problem 2. (a) Prove the following theorem.
Theorem. Let f be a function which is defined on the interval (0,1$]$. Define the sequence $a: \mathbb{N} \rightarrow \mathbb{R}$ by

$$
a_{n}=f(1 / n) \quad \text { for every } \quad n \in \mathbb{N} .
$$

If $\lim _{x \downarrow 0} f(x)=L$, then $\lim _{n \rightarrow+\infty} a_{n}=L$.
(b) Formulate the converse of the above theorem. Is the converse true? Justify your answer.

Problem 3. Let $a: \mathbb{N} \rightarrow \mathbb{R}$ and $b: \mathbb{N} \rightarrow \mathbb{R}$ be given sequences. Define the sequence $c: \mathbb{N} \rightarrow \mathbb{R}$ by

$$
c_{n}=a_{n}+b_{n} \quad \text { for every } \quad n \in \mathbb{N} .
$$

Prove: If $\lim _{n \rightarrow+\infty} a_{n}=L$ and $\lim _{n \rightarrow+\infty} b_{n}=K$, then $\lim _{n \rightarrow+\infty} c_{n}=L+K$.
Problem 4. Consider the sequence $a: \mathbb{N} \rightarrow \mathbb{R}$ defined by

$$
a_{n}=\sum_{k=n+1}^{2 n} \frac{1}{k}=\frac{1}{n+1}+\cdots+\frac{1}{2 n}, \quad n \in \mathbb{N} .
$$

Prove that this sequence converges. Finding the exact value of the limit is extra credit.
Problem 5. Prove that the sequence $s: \mathbb{N} \rightarrow \mathbb{R}$ defined by $s_{n}=(-1)^{n}$ for all $n \in \mathbb{N}$, does not converge.

