```
In[0]= 票此[x]
Out[0]= Cosh[x]
In[f]= Sinh[x]
Out[0]= Sinh[x]
In[ []:= Tanh[x]
Out[0]= Tanh[\mathbf{x}]
```

Below I show the hyperbolic cosine and hyperbolic sine function.
$\ln [f]=\operatorname{Plot}\left[\left\{\frac{\operatorname{Exp}[\mathbf{x}]+\operatorname{Exp}[-\mathrm{x}]}{2}, \frac{\operatorname{Exp}[\mathrm{x}]-\operatorname{Exp}[-\mathrm{x}]}{2}\right\}\right.$, $\{x,-2,2\}$, PlotRange $\rightarrow\{-4,4\}$, AspectRatio \rightarrow Automatic $]$

The hyperbolic $\operatorname{cosine} \operatorname{Cosh}[x]=\frac{\operatorname{Exp}[x]+\operatorname{Exp}[-x]}{2}$ has the following properties
$\ln [1]:=\left\{\operatorname{Cosh}[0], \operatorname{Cosh}{ }^{\prime}[0]\right\}$
Out $[1]=\{1,0\}$
which are identical to the analogous properties of $\operatorname{Cos}[x]$
$\ln [2]=\left\{\operatorname{Cos}[0], \operatorname{Cos}{ }^{2}[0]\right\}$
Out $[2]=\{1,0\}$

In addition, the hyperbolic cosine is even as is cosine and the hyperbolic cosine satisfies the differential equation
$\ln [3]:=\operatorname{Cosh}{ }^{\prime} '[\mathrm{X}]-\operatorname{Cosh}[\mathrm{x}]==0$
out[3]= True

While cosine satisfies the differential equation
$\ln [4]:=$
Out[4]=
Cos' ${ }^{\prime}[\mathrm{x}]+\operatorname{Cos}[\mathrm{x}]=0$
True
Altogether Cosh and Cos share many properties, so they do deserve similar names. Moreover, if you take Math 438, Complex Analysis, you will learn even more similarities between these functions.
Similarly, the hyperbolic sine $\operatorname{Sinh}[x]=\frac{\operatorname{Exp}[x]-\operatorname{Exp}[-x]}{2}$ has the following properties
\{Sinh [0], Sinh ' [0] \}
$\{0,1\}$
which are identical to the analogous properties of $\operatorname{Sin}[x]$
\{Sin [0], Sin ' [0] \}
$O u t[6]=\{0,1\}$

In addition, the hyperbolic sine is odd as is sine and the hyperbolic sine satisfies the differential equation
$\ln [7]:=\operatorname{Sinh}$ ' ' $[x]-\operatorname{Sinh}[x]=0$
out $[7]=$ True
While sine satisfies the differential equation
$\ln [8]:=\operatorname{Sin}{ }^{\prime} \mathbf{~ [x]}+\operatorname{Sin}[x]=\mathbf{0}$
Out [8]= True
Altogether Sinh and Sin share many properties, so they do deserve similar names. Moreover, if you take Math 438, Complex Analysis, you will learn even more similarities between these functions.

The next natural definition of a hyperbolic function is the hyperbolic tangent Tanh[x] which is defined as the fraction $\operatorname{Sinh}[\mathrm{x}] / \operatorname{Cosh}[\mathrm{x}]$:

```
    Exp[x]-Exp[-x]
In[-]:=}\frac{2}{\operatorname{Exp}[x]+\operatorname{Exp}[-x]
    Exp[x]-Exp[-x]
In[-]:=}\frac{\frac{\operatorname{Exp}[x]-\operatorname{Exp}[-x]}{2}}{\frac{\operatorname{Exp}[x]+\operatorname{Exp}[-x]}{2}
Out[0]=}\frac{-\mp@subsup{e}{}{-x}+\mp@subsup{e}{}{x}}{\mp@subsup{e}{}{-x}+\mp@subsup{e}{}{x}
```

$\ln [\rho]:=\operatorname{Plot}[\{\operatorname{Tanh}[x]\},\{x,-10,10\}$, PlotRange $\rightarrow\{-1,1\}]$

Tanh[x] is a famous function since it approaches 1 very quickly as x becomes large positive number.
$\ln [\cdot]:=$
Out[0]=
Tanh [8]

N [Tanh [8] , 10]
Out[9]= 0.9999997749
$\ln [10]:=\mathbf{N}[\operatorname{Tanh}[20], 10]$
Out[10]=
1.000000000

Although, have in mind that $\operatorname{Tanh}[x]<1$ for all $x \in \mathbb{R}$.
$\operatorname{In}[\odot]:=$ Limit [Tanh [x], $x \rightarrow$ Infinity]
Out [o]= 1

What engineers mean by saying $\operatorname{Tanh}[8]=1$?
They mean that 1 -error $<\operatorname{Tanh}[8]<1+e r r o r$
1-error < Tanh[8] < 1+error
equivalent to
1-error +(-1) < Tanh[8] -1 < 1+error +(-1)
equivalent to
-error < Tanh[8]-1 < +error error is always a positive number
equivalent
\mid Tanh[8]-1|<error
In Calculus the error is always denoted by
$\ln [f]=\operatorname{Plot}[\{1, \operatorname{Tanh}[x], 1-0.1\},\{x, 0,2\}, \operatorname{PlotRange} \rightarrow\{0,2\}]$

In[0]: $=\mathbf{N}[$ Tanh [20] , 20]
Out[$-=0.99999999999999999150$
$\ln [\rho]=\mathbf{N}[\operatorname{Tanh}[100]$, 200]
Out $[=0=0.999$: 723220694652652493870263708604183062919390483532104558121214929377512793909801402438240 5865765139346117090256137123

For every $\varepsilon>0$ there exists $X(\varepsilon)$ such that $x \geq X(\varepsilon)$ then we must have $|f(x)-L|<\varepsilon$
For every $\varepsilon>0$ there exists $X(\varepsilon)$ such that $x \geq X(\varepsilon)$ implies $|f(x)-L|<\varepsilon$
If the statement in the preceding cell is true, then we say that L is the limit of $f(x)$ as x approaches $+\infty$. $\lim _{-}\{x \rightarrow+\infty\} f(x)=L$
L has the following property: $\forall \varepsilon>0 \exists X(\varepsilon)$ s.t. $x \geq X(\varepsilon) \Rightarrow|f(x)-L|<\varepsilon$
$\ln [\cdot]=\operatorname{Limit}[T a n h[x], x \rightarrow$ Infinity]
Out [0]= 1
To do a formal proof of a limit we need to start from the end. Let us do that for Tanh $[x]$
Let $\varepsilon>0$ be arbitrary. I need to understand when is the following inequality true $|\tanh (x)-1|<\varepsilon$
First I simplify the expression

$$
\begin{aligned}
& |\tanh (x)-1|=\mid \\
& \qquad \frac{\frac{e^{x}-e^{-x}}{2}}{\frac{2}{\frac{e^{x}+e^{-x}}{2}}-1\left|=\left|\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}-1\right|=\left|\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}-\frac{e^{x}+e^{-x}}{e^{x}+e^{-x}}\right|=\left|\frac{e^{x}-e^{-x}-\left(e^{x}+e^{-x}\right)}{e^{x}+e^{-x}}\right|=\left|\frac{-2 e^{-x}}{e^{x}+e^{-x}}\right|=\frac{2 e^{-x}}{e^{x}+e^{-x}}\right.}
\end{aligned}
$$

