
In[ ]:= Cosh[x]

Out[ ]= Cosh[x]

In[ ]:= Sinh[x]

Out[ ]= Sinh[x]

In[ ]:= Tanh[x]

Out[ ]= Tanh[x]

Below I show the hyperbolic cosine and hyperbolic sine function. 

In[ ]:= Plot
Exp[x] + Exp[-x]

2
,
Exp[x] - Exp[-x]

2
,

{x, -2, 2}, PlotRange → {-4, 4}, AspectRatio → Automatic
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The hyperbolic cosine Cosh[x] = Exp[x]+Exp[-x]
2  has the following properties 

In[1]:= {Cosh[0], Cosh'[0]}

Out[1]= {1, 0}

which are identical to the analogous properties of Cos[x]

In[2]:= {Cos[0], Cos'[0]}

Out[2]= {1, 0}



In addition, the hyperbolic cosine is even as is cosine and the hyperbolic cosine satisfies the differential 
equation 

In[3]:= Cosh''[x] - Cosh[x] ⩵ 0

Out[3]= True

While cosine satisfies the differential equation 

In[4]:= Cos''[x] + Cos[x] ⩵ 0

Out[4]= True

Altogether Cosh  and Cos share many properties, so they do deserve similar names.  Moreover, if you 
take Math 438, Complex Analysis, you will learn even more similarities between these functions.   

Similarly, the hyperbolic sine Sinh[x] = Exp[x]-Exp[-x]
2  has the following properties 

In[5]:= {Sinh[0], Sinh'[0]}

Out[5]= {0, 1}

which are identical to the analogous properties of Sin[x]

In[6]:= {Sin[0], Sin'[0]}

Out[6]= {0, 1}

In addition, the hyperbolic sine is odd as is sine and the hyperbolic sine satisfies the differential equa-
tion 

In[7]:= Sinh''[x] - Sinh[x] ⩵ 0

Out[7]= True

While sine satisfies the differential equation 

In[8]:= Sin''[x] + Sin[x] ⩵ 0

Out[8]= True

Altogether Sinh  and Sin share many properties, so they do deserve similar names.  Moreover, if you 
take Math 438, Complex Analysis, you will learn even more similarities between these functions.   

The next natural definition of a hyperbolic function is the hyperbolic tangent Tanh[x] which is defined 
as the fraction Sinh[x]/Cosh[x] :

In[ ]:=

Exp[x]-Exp[-x]

2

Exp[x]+Exp[-x]

2

In[ ]:=

Exp[x]-Exp[-x]

2

Exp[x]+Exp[-x]

2

Out[ ]=

-ⅇ-x + ⅇx

ⅇ-x + ⅇx
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In[ ]:= Plot[{Tanh[x]}, {x, -10, 10}, PlotRange → {-1, 1}]

Out[ ]=
-10 -5 5 10

-1.0

-0.5

0.5

1.0

Tanh[x]  is a famous function since it approaches 1 very quickly as x becomes large positive number. 

In[ ]:= Tanh[8]

Out[ ]= Tanh[8]

In[9]:= N[Tanh[8], 10]

Out[9]= 0.9999997749

In[10]:= N[Tanh[20], 10]

Out[10]= 1.000000000

Although, have in mind that Tanh[x] < 1 for all x ∈ ℝ. 

In[ ]:= Limit[Tanh[x], x → Infinity]

Out[ ]= 1

What engineers mean by saying Tanh[8]=1? 

They mean that   1-error < Tanh[8]  <  1+error 

1-error < Tanh[8]  <  1+error 

equivalent to 

1-error +(-1) < Tanh[8] -1 <  1+error +(-1) 

equivalent to 

-error < Tanh[8] -1 <  +error  error is always a positive number 

equivalent 

| Tanh[8] - 1 | < error

In Calculus the error is always denoted by    ε
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In[ ]:= Plot[{1, Tanh[x], 1 - 0.1}, {x, 0, 2}, PlotRange → {0, 2}]

Out[ ]=
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In[ ]:= N[Tanh[20], 20]

Out[ ]= 0.99999999999999999150

In[ ]:= N[Tanh[100], 200]

Out[ ]= 0.99999999999999999999999999999999999999999999999999999999999999999999999999999999999999

723220694652652493870263708604183062919390483532104558121214929377512793909801402438240

5865765139346117090256137123

For every ε > 0  there exists X(ε)  such that x ≥ X(ε) then we must have f(x) - L < ε

For every ε > 0  there exists X(ε)  such that x ≥ X(ε)  implies f(x) - L < ε

If the statement in the preceding cell is true, then we say that L is the limit of  f(x)  as  x approaches +∞.   
 _ {x→ +∞} f(x) = L

L has the following property: ∀ ε > 0   ∃ X(ε)   s.t.  x ≥ X(ε)  ⇒ f(x) - L < ε 

In[ ]:= Limit[Tanh[x], x → Infinity]

Out[ ]= 1

To do a formal proof of a limit we need to start from the end. Let us do that for Tanh[x]

Let  ε > 0 be arbitrary.  I need to understand when is the following inequality true tanh(x) - 1 < ε 

First I simplify the expression 

 tanh(x) - 1 =

ⅇx-ⅇ-x

2
ⅇx+ⅇ-x

2

- 1 = ⅇx-ⅇ-x

ⅇx+ⅇ-x
- 1 = ⅇx-ⅇ-x

ⅇx+ⅇ-x
- ⅇx+ⅇ-x

ⅇx+ⅇ-x
= ⅇx-ⅇ-x-(ⅇx+ⅇ-x)

ⅇx+ⅇ-x
= -2ⅇ-x

ⅇx+ⅇ-x
= 2ⅇ-x

ⅇx+ⅇ-x
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