The negation of the definition of limit

April 17,2020

The statement (II) in the def of limit is
\forall day \exists min
 bad epsilon
finish two pages down

$\exists \varepsilon>0 \quad \forall x \geqslant X_{0} \quad \exists x \leq . f$.

X find larger $\underbrace{(2 k+1) \pi}_{-1}+\frac{\pi}{2}$

$$
\begin{gathered}
X<(2 k+1)_{\text {integer }} \\
\frac{X}{\pi}<2 k+1 \\
{\left[\frac{\frac{X}{\pi}-1}{2}\right\rceil=k}
\end{gathered}
$$

$$
x<\left(2\left[\frac{\frac{x}{\pi}-1}{2}\right]+1\right) \pi+\frac{\pi}{2}
$$

$\forall x \geqslant 0$ late $x=\left[2\left[\frac{\frac{x}{2}-1}{2}\right]+1\right] \pi+\frac{\pi}{2}$, then $\sin (x)=-1$ and $x>X$ and

$$
\begin{aligned}
& \text { and } x>X \text { and } \\
& |\sin (x)-1|=2>1
\end{aligned}
$$

In fact, to prove limes in x does lutist
To prove this claim we need to prove that $\lim _{x++\infty} \sin x=L$ is wrong $\forall L \in \mathbb{Z}$ 。

Consider three cases:

